Design of Affordable and Efficient Ground-Source Heat Pump Systems

Stephen Kavanaugh, Ph.D., Fellow ASHRAE University of Alabama and Energy Information Services skavanaugh@eng.ua.edu www.geokiss.com

Copyright

Copyright © 2018, 2020 by ASHRAE. All rights reserved. No part of this presentation may be reproduced without written permission from ASHRAE, nor may any part of this presentation be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, photocopying, recording, or other) without written permission from ASHRAE.

ASHRAE has compiled this presentation with care, but ASHRAE has not investigated and ASHRAE expressly disclaims any duty to investigate any product, service, process, procedure, design or the like, that may be described herein. The appearance of any technical data or editorial material in this presentation does not constitute endorsement, warranty or guaranty by ASHRAE of any product, service, process, procedure, design, or the like. ASHRAE does not warrant that the information in this publication is free of errors. The user assumes the entire risk of the use of the use of any information in this presentation.

About the Instructor

Stephen Kavanaugh, Ph.D., Fellow ASHRAE, is professor emeritus of mechanical engineering at the University of Alabama-Tuscaloosa. He is a past chair of ASHRAE Technical Committee 6.8 Geothermal Energy, and past chair of TC 9.4 Applied Heat Pumps and Heat Recovery. He is also a Fellow of the American Society of Mechanical Engineers.

Kavanaugh is the author of several ASHRAE publications including: *Geothermal Heating and Cooling: Design of Ground-Source Heat Pump Systems* (2014); *HVAC Simplified* (2006); and *Ground Source Heat Pumps: Design of Geothermal Systems for Commercial and Institutional Buildings* (1997). He also received the ASHRAE Technical Achievement Award in 2001.

Since 1993, Kavanaugh has owned Energy Information Services, which operates the GeoKISS website www.geokiss.com. GeoKISS provides accurate information on ground-source (geothermal) heat pumps, enabling designers and installers to develop affordable, long lasting and low energy systems by using "simple and solid piping, equipment and controls."

Kavanaugh has also been actively involved with Habitat for Humanity for many years. He was chair of the board of directors twice for the Tuscaloosa Affiliate. He has worked on about 50 Habitat homes (including one with a GSHP system), and he was a construction supervisor for five of them. And for most of his life, Kavanaugh lived in homes that were heated and cooled by GSHP systems.

AIA/CES Registered Provider

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Attendance for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Learning Objectives

- 1. Understand GSHP nomenclature, system types, and appropriateness of various options.
- 2. Become acquainted with equipment options and methods of calculating system performance.
- 3. Learn the procedures for ground-coupled (closed-loop) heat exchanger and piping design.
- 4. Become familiar with GSHP system costs and fieldmeasured performance data.
- 5. Gain knowledge of available ASHRAE resources to improve and expedite GSHP design.

Course Outline

- Session 1: Introduction to Ground-Source Heat Pumps
- Session 2: Equipment for Ground-Source Applications
- Session 3: Applied GCHP Design
- Session 4: Piping and Pumps for Closed-Loop Ground-Source Heat Pumps
- Session 5: GSHP Performance and Installation Cost

Session 1

INTRODUCTION TO GROUND-SOURCE HEAT PUMPS

Some References

- 2015 ASHRAE Handbook—HVAC Applications, Chapter 34
- Geothermal Heating and Cooling: Design of Ground Source Heat Pump Systems (ASHRAE, 2014)
- ASHRAE Journal articles, "Long Term Commercial GSHP Performance," Vol. 54, Nos. 6, 7, 9, 10, 12; Vol. 55 Nos. 1 & 2
- www.geokiss.com

7

Ground-Coupled Heat Pumps (GCHPs) (a.k.a. Closed-Loop Geothermal) Description and Nomenclature

Vertical Ground Heat Exchanger Terms for Two Typical Formations

Surface Water Heat Pumps (SWHPs) (a.k.a. Pond Loop, Lake Loop, Ocean Loop, Open Loop) Description and Nomenclature

Ground-Water Heat Pumps (GWHPs) (a.k.a Open-Loop Geothermal) Description and Nomenclature

GCHP—Unitary Loop Option Highest Average Energy Star Rating, Simple Installation, Control and Maintenance, Relatively Low Installation Costs, Best with Low-Rise, Large Footprint Building

GCHP—Common Loop Option

Simple Installation, Control and Maintenance, Takes Advantage of Load Diversity, Relatively Low Installation Costs

One-Pipe Loop Option

Second Highest Average Energy Star Rating, Simple Installation, Control and Maintenance, Takes Advantage of Load Diversity, Relatively Low Installation Costs

Central Loop Option Lowest Average ENERGY STAR[®] Rating, Highest Installation Costs, Takes Advantage of Load Diversity, Popular with Engineers New to GSHP Design Circuit with Eight **U-tubes per Circuit Central Ground Loop** Heat Pumps with Two-Way Purge & Circuit Valves in Equipment Room Valves Located in Zones Option with Multiple Supply and Return Headers Central Loop Piping & Pump(s) with VSD iô Optional In-Ground Fluid Vault with Purge One Loop per Building Modified Reverse-Cooler & Circuit Valves Return Circuit Alternate with Vault and Single S & R Headers

Buildings with Multiple Loop Options

Surface Water Heat Pumps (SWHPs) Common Loop with Equipment Room Manifold

Open Loop Surface Water Direct Cooling (and Possibly Heat Pump Operation*)

* In heating for open loop surface water heat pumps:

- Coil Leaving Water Temperature (°F) \approx Entering Water Temp (°F) 18 ÷ gpm/ton
- LWT must be 3°F to 5°F above 32°F to prevent frost on water coil
- Thus, minimum EWT must be at least 42°F to 44°F, which does not occur in many lakes.

Direct Cooling of Outside and Primary Air with Cold Water from Deep Reservoirs and Northern Ground Water

Preliminary Evaluation Choosing the Optimum GSHP System GSHP Site and HVAC System Evaluation

- GCHP: Size of building and site, regulations, estimated loop size, drilling depth, thermal property test
- Equipment Options: Water-to-air heat pumps, water-to-water heat pumps, chiller, hybrid-fluid cooler/cooling tower
- Distribution Options: Unitary forced air, fan coil units, air handlers with VAV, in-floor heat, chilled beam
- Efficiency and cost estimate of heat exchanger and equipment

Preliminary Ground-Coupled Heat Pump Considerations

Regulations

- Size, type, and efficiency of building envelope and loads
- Size of ground loop site
- Geological and hydro-geological formation properties
- Economic drilling depths
- Thermal property test

Ground-Coupled Heat Pump Example Site Area Estimate for a 10,000 ft² (930 m²) Office

Example cooling load (q_{lc}) 21 tons (73 kW)

Local GCHP designs average around 220 ft/ton of vertical bore (L_{bore}/q) for offices

- Thus, the total bore estimate would be 4620 ft (1400 m)
- Local drillers are comfortable with bore depths (D_{bore}) of 300 ft (90 m)
- The number of bores (N_{bore}) will likely 16 (4620 ft ÷ 300 ft/bore = 15.4)
- Bores separation (S_{bore}) should be 20 ft (6 m)

Site Area $\approx q_{lc} \times (L_{bore}/q) \times S_{bore}^2 \div D_{bore}$

Site Area \approx 21 tons \times 220 ft/ton \times (20 ft)²] ÷ 300 ft \approx 6160 ft² (570 m²/0.14 acre) **Formation Properties** and Drilling Conditions Abundant Info from State Geological Surveys

Well Logs

201 10		<i>a</i> .								
STATE OF OREGON	APR	6 1999	WELLID #L I	26.056						
(as required by ORS 537.765)	START CARD # 108474									
Instructions for completing this report are on the last page	· ANALER BESO	URCES DEPT								
(1) OWNER: Well Number	OALLIM,	(9) LOCATION OF V	VELL by legal desc	cription:						
NameGARY WILLIAMS		County KLAMATH Latitude Longitude								
Address 37716 McCARTIE LANE	7	Townshigg_g_	N or S Range	2 E	E or V	V. WM.				
Cityponanza State Op	Z197623	Tex Let o t	SW 1/4	NE Sul	1/4 Idivision					
New Well Deepening Alteration (repair/recondition)	Abandonment	Street Address of Well (or nearest address)								
(3) DRILL METHOD:		BONANZA OR	97623	57305 n	COART	IE LR				
Rotary Air Rotary Mud Cable Auger		(10) STATIC WATER LEVEL:								
Other		Attacion structure Ib are structure inth								
(4) PROPOSED USE:	ation	(11) WATER REARI	NG ZONES:	reinch. D	-ate					
Thermal Injection Livestock Othe	r	(
(5) BORE HOLE CONSTRUCTION:	2201	Depth at which water was	first found 98 F	٢						
Special Construction approval 🗌 Yes 🔣 No Depth of Comple	ted Weilft.									
Explosives used Yes X No Type Amou	int	From	To	Estimated	Flow Rate	SWL				
HOLE SEAL	ache er norada	98	230	200 GPN		86				
	29 SKS									
BENT. 119	7 SKS									
6 119 230 OPEN										
		(12) WELL LOG:								
How was seal placed: Method A B		Ground	Elevation 4130							
Backfill placed from ft. to ft. Material		Materia	4	From	То	SWL				
Gravel placed from ft. to ft. Size of gr	avel	TOP SOIL		0	2					
(6) CASING/LINER:		YELLOW CLAY	TONE	2	10					
Diameter From To Gauge Steel Plastic	Weided Threaded	BRUWR SARDS	POCK	52	53					
Casing:+1129 -25 _X ⊢	* 님	BROWN CLAY	RUCN	60	63					
	HH	BLACK ROCK		63	64					
Liner:		BROWN CLAY		64	71					
		BRAY CLAYST	ONE	- 1 / I	93					
Final location of shoe(s)MOME		BLACK ROCK	(WB)	98	137	86				
(7) PERFORATIONS/SCREENS:		BROWN ROCK	(WB)	137	163	86				
Screens Type Materi	al	BLACK ROCK	(WB)	163	185	86				
Slot Slot Slot Tele/pipe	Casing Liner	BROWN ROCK	(WB)	185	204	86				
		BLACK ROCK	(WB)	204	226	86				
		BROWN ROCK		226	230	86				
		[
	· 님 님									
	. 🗆 🔟									
(8) WELL TESTS: Minimum testing time is 1 hour		Date started 2 29	GG Com	pleted 3	30	99				
	Flowing	(unbonded) Water Well	Constructor Certific	tion:						
Pump Bailer Air	Artesian	I certify that the work	I performed on the con ce with Oregon water	supply well con	ntion, or abo Instruction s	andonment andards.				
Yield gal/min Drawdown Drill stem at	Time	Materials used and inform	nation reported above	are true to the b	est of my k	nowledge				
	110.	All Ocher.		WWC Nun	nber					
		Signed			Date					
Temperature of water 65 F Depth Artesian Flow For	INDIE	(bonded) Water Well Co	nstructor Certificati	00:						
Was a water analysis done? Yes By whom		I accept responsibility	for the construction, a	Iteration, or aba	hove. All	work vork				
Did any strata contain water not suitable for intended use?	Too little	performed during this tim	e is in compliance wit	h Oregon water	supply wel					
Saity Muddy Odor Colored Other		construction standards. T	ins report is true to the	WWC Nur	mber	a deller.				
Deput of strand: NONE		Signed Stiphe	w B Hus	her	Date 4	2-99				
ORIGINAL & FIRST COPY-WATER RESOURCES DI	EPARTMENT SE	COND COPY-CONSTR	UCTOR THIRD	COPY-CUST	TOMER					

GSHP System Equipment and Distribution Options

- The HVAC system must be efficient in order for the GSHP to be efficient.
- Systems with large amounts of fan and pump power will require much larger ground loops to dissipate the additional heat in the cooling mode.
- Systems with large amount of fan power will operate in heating much fewer hours and thus fail to remove sufficient heat from the ground loop to balance cooling heat rejection.
- The spreadsheet tool HVACSytemEff.xlsx is available to transpose equipment specifications (heat pumps, fans, pumps, etc.) to calculate <u>system</u> efficiency and ensure the GSHP system design will perform as advertised.

Long-Term GSHP Performance Survey

Energy Star Ratings and Years of Operation for GSHP Buildings 79 79 ^{81 82 82 83 85 87 88 89} 92 93 93 93 95 96 97 97 97 99 99100 Energy Star Years of Operation ES = Elementary School MS = Middle School HS = High School Off = Office74 69 MFa = Multi-Family Housing MW = Mid Western State 54 ^{56 58} 49 39 32 20 21 21 21 .7 16 16 15 15 .5 12 10 10 9 9 8 MW-MS TN-MS TN-ES1 FL-Mfa GA-ES2 KY-ES2 TN-ES2 IL-ES2 TX-MS TX-HS IL-MS IL-ES5 MW-HS1 AL-Off GA-MS KY-Off AL-MS NW-ES1 NW-ES2 MS-Off KY-ES1 GA-ES1 AL-ES2 TN-Off MW-HS2 **TN-HS1** FL-Off TN-HS2 IL-ES1 AL-ES1 IL-ES3 IL-ES4 Hotel -X-ES1 X-ES2

25

ENERGY STAR Rating and GCHP Loop Type

Performance Prediction Heat Pump GSHP System Efficiency Example 1: 200 WAHPs, 20 Common Loops

Common Loop GSHP System Efficiency EER = 14.6 Btu/W'h (COP = 4.27)

	HVAC System Cooling	: HVAC Simplified , ASHRAE, 2006)										
			Yellow Colored Cells for Input					Do Not Type in Blue (Output) Cells				
Item		Ente	r Chiller Data in C	Cells Below	OR	Enter	AC/HP Da	ta				
1	Chillers or Heat Pumps Click Here for Explanation	Qty.	kW/ton	Tons		Qty.	EER	kBtu/h	kW-each	kW-total	kBtu/h	tons
	WC chillers based on CoLWT=95 F*, ChWLT=44 F*					50	19.2	28.3	1.5	73.7	1415.0	117.9
	AC chillers based on OAT = 95 F*, ChWLT = 44 F*					100	19.6	34.5	1.8	176.0	3450.0	287.5
	Enter EER at 95 F* (air source) or EER at 86 F* (WSHP)					50	19.2	40.6	2.1	105.7	2030.0	169.2
	*Enter ratings at non-standard conditions when approp	priate.							0.0	0.0	0.0	0.0
2a	Air Handling Unit Fans (≥1.0 hp) Click Here		Air Flow (cfm)	TP (in. wtr)	η fan (%)	η mtr. (%)	η VSD (%)	hp-each				
L r	Ean newer added here if corrections not							0.00	0.00	0.0	0.0	0.0
	made to EER and capacity							0.00	0.00	0.0	0.0	0.0
L								0.00	0.00	0.0	0.0	0.0
2b	DX Coil, Water Coil, or VAV Fans (<1.0 hp) Click Here		Air Flow (cfm)	TP (in. wtr)	η wire-air (%)	OR hp-each	η mtr. (%)					
	Systems with Unitary ACs or Heat Pumps	50	900	0.6	30.0%			0.28	0.21	10.6	-36.1	-3.0
		100	1200	0.7	30.0%			0.44	0.33	32.9	-112.2	-9.4
		50	1300	0.7	30.0%			0.48	0.36	17.8	-60.8	-5.1
3	Return Air Fans - Enter exhaust air % 🗲	20%	Air Flow (cfm)	TP (in. wtr)	η fan (%)	η mtr. (%)	η VSD (%)					
								0.00	0.00	0.0	0.0	0.0
								0.00	0.00	0.0	0.0	0.0
								0.00	0.00	0.0	0.0	0.0
4	Chilled Water Pumps		Wtr. Flow (gpm)	ΔH (ft. wtr)	η pump (%)	η mtr. (%)	η VSD (%)					
								0.00	0.00	0.0	0.0	0.0
								0.00	0.00	0.0	0.0	0.0
								0.00	0.00	0.0	0.0	0.0
5	Condenser or Ground Loop Water Pumps		Wtr.Flow (gpm)	ΔH (ft. wtr)	η pump (%)	η mtr. (%)	η VSD (%)				Click I	Here
		50	8	30	50.0%	50.0%	100.0%	0.12	0.18	9.0		
		100	9	30	50.0%	50.0%	100.0%	0.14	0.20	20.3		
		50	11	30	50.0%	50.0%	100.0%	0.17	0.25	12.4		
6	Condenser (or Fluid Cooler/Cooling Tower) Fan	0	Air Flow (cfm)	TP (in. wtr)	η fan (%)	η mtr. (%)	η VSD (%)	hp-each				
		0				75.0%	100.0%		0.00	0.0		
									0.00	0.0		
									0.00	0.0		
							kW		kW	kBtu/h	tons	
								System Totals		458.6	6685.9	557.2
				kW/ton =	0.82	EER =	14.6	Btu/W-	COP =	4.27		
		ASHR	AE 90.1 check	Q (cfm) =	230000 Fan hp =		82	hp/1000cf	0.36			

Performance Prediction Chilled-Water VAV GSHP System Efficiency Example 2: 2 WC-Chillers, 16 AHUs, Central Loop

CWVAV—Central Loop GSHP System Efficiency EER = 7.8 Btu/W·h (COP = 2.28)

	HVAC System Cooling Eff	HVAC System Cooling Efficiency Calculator (Reference: HVAC Simplified , ASHRAE, 2006)										
			Yellow Col	ored Cells f	or Input			[Do Not Type	e in Blue (Output) Cells		
Item		Ente	r Chiller Data in C	ells Below	OR	Enter AC/HP		Data				
1	Chillers or Heat Pumps Click Here for Explanation	Qty.	kW/ton	Tons		Qty.	EER	kBtu/h	kW-each	kW-total	kBtu/h	tons
	WC chillers based on CoLWT=95 F*, ChWLT=44 F*	2	0.5	340					170.0	340.0	8160.0	680.0
	AC chillers based on OAT = 95 F*, ChWLT = 44 F*								0.0	0.0	0.0	0.0
	Enter EER at 95 F* (air source) or EER at 86 F* (WSHP)								0.0	0.0	0.0	0.0
	*Enter ratings at non-standard conditions when appropriate.								0.0	0.0	0.0	0.0
2a	Air Handling Unit Fans (<u>></u> 1.0 hp) Click Here		Air Flow (cfm)	TP (in. wtr)	η fan (%)	η mtr. (%)	η VSD (%)	hp-each				
		4	40000	5	75.0%	93.0%	98.0%	41.99	34.37	137.5	-469.1	-39.1
		4	20000	4	75.0%	92.0%	98.0%	16.80	13.90	55.6	-189.7	-15.8
		8	4000	2	70.0%	88.0%	98.0%	1.80	1.56	12.5	-42.5	-3.5
2b	DX Coil, Water Coil, or VAV Fans (<1.0 hp) Click Here		Air Flow (cfm)	TP (in. wtr)	η wire-air (%)	OR hp-each	η mtr. (%)					
	Systems with Unitary ACs or Heat Pumps	50	1600	0.5	30.0%			0.42	0.31	15.7	-53.4	-4.5
		120	1200	0.5	28.0%			0.34	0.25	30.2	-103.1	-8.6
		60	800	0.5	25.0%			0.25	0.19	11.3	-38.5	-3.2
3	Return Air Fans - Enter exhaust air % → → →	20%	Air Flow (cfm)	TP (in. wtr)	η fan (%)	η mtr. (%)	η VSD (%)					
		8	34000	2.5	75.0%	92.0%	97.0%	17.85	14.92	119.4	-325.8	-27.2
								0.00	0.00	0.0	0.0	0.0
								0.00	0.00	0.0	0.0	0.0
4	Chilled Water Pumps		Wtr. Flow (gpm)	∆H (ft. wtr)	ղ pump (%)	η mtr. (%)	η VSD (%)					
		2	825	100	70.0%	90.0%	97.0%	29.76	25.43	50.9	-173.5	-14.5
		2	825	50	70.0%	90.0%	97.0%	14.88	12.72	25.4	-86.8	-7.2
								0.00	0.00	0.0	0.0	0.0
5	Condenser or Ground Loop Water Pumps		Wtr.Flow (gpm)	∆H (ft. wtr)	η pump (%)	η mtr. (%)	η VSD (%)				Click H	lere
		2	1000	100	70.0%	90.0%	97.0%	36.08	30.83	61.7		
								0.00	0.00	0.0		
								0.00	0.00	0.0		
6	Condenser (or Fluid Cooler/Cooling Tower) Fan	0	Air Flow (cfm)	TP (in. wtr)	η fan (%)	η mtr. (%)	η VSD (%)	hp-each				
		0				75.0%	100.0%		0.00	0.0		
									0.00	0.0		
									0.00	0.0		
										kW	kBtu/h	tons
								System	Totals	860.0	6677.6	556.5
				kW/ton :	1.55	EER =	7.8	Btu/W-h	COP =	2.28		

GSHP Costs: 1995 to 2011

- The average ground heat exchanger cost in the recent survey was 26% of total GSHP cost and increased by 50% (3% per year) since 1995
- The average HVAC cost in the recent survey was 74% of the total GSHP system cost and has increased by 177% (11% per year) since 1995
- Using logic (an important tool for engineering), cost optimization should include, and possibly concentrate, on the HVAC component of GSHPs

GSHP Cost Versus Performance

- Open access to cost information (operating, HVAC components, and ground loops) is critical
- Currently, this information is limited and typically not reported (why not do it—isn't that hard)
- ENERGY STAR rating is simple indicator of *system* performance with reasonable accuracy
- ASHRAE Standard 90.1-2016 compliance is likely a poor predictor of performance because it deals with just the parts and not the whole *system*
- Quality engineering practice can often reduce both installation and operating cost via **KISS**

Questions?

Comments?

Session 2 EQUIPMENT FOR GROUND-SOURCE APPLICATIONS

Water-to-Air Heat Pump Circuit and Controls

Water-to-Water Heat Pump Circuit

Convenience Store Application with Heating and Cooling Requirements

Heat Pump Types (with Pictures)

Well-Located Heat Pumps

Heat Pumps for Larger Spaces

Easy to Service Heat Pumps

Poorly Located Heat Pumps

Water-to-Water Heat Pumps

Hard to Service Heat Pumps 38

© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

Revenge of the Overextended Service Tech (after the Fan Motor Burned Out the Second Time)

Happy Service Techs and Supervisor: Removable Classroom WAHP Refrigerant Circuit

Table 2.1 ISO 13256-1 Rating Conditions for Water-to-Air Heat Pumps

Entering Liquid &	WLHP	GWHP	GLHP	GLHP-PL
Air Temperatures	Water Loop	Groundwater	Ground Loop	(Part-Load)
ELT - Cooling	86°F (30°C)	59°F(15°C)	77°F(25°C)	68°F (20°C)
Exterior Loop				
ELT - Heating	68°F (20°C)	50°F (10°C)	32°F (0°C)	41°F (5°C)
Exterior Loop				
EAT - Cooling		80.6/66.2°	F (27/19°C)	
Dry bulb/wet bulb				
EAT - Heating		68°F	(20°C)	

Note: Values for TC, EER, HC and COP do not include fan power or pump required to circulate air and water through the air distribution system and piping loop. Values for TC do not include the loss of capacity due to the heat of the fan. The power to circulate air and water through unit itself is included in the calculation.

Table 2.2 ISO 13256-2 Rating Conditions for Water-to-Water Heat Pumps

Entering Liquid	WLHP	GWHP	GLHP	GLHP-PL
Temperatures	Water Loop	Groundwater	Ground Loop	(Part-Load)
ELT - Cooling	86°F (30°C)	59°F(15°C)	77°F(25°C)	68°F (20°C)
Exterior Loop				
ELT - Heating	68°F (20°C)	50°F (10°C)	32°F (0°C)	41°F (5°C)
Exterior Loop				
ELT - Cooling		53.6°F ((12°C)	
Interior Loop				
ELT - Heating		104°F (40°C	
Interior Loop				

Note: Values for TC, EER, HC and COP do not include pump power required to circulate water through the exterior and interior piping loops. Likewise the fan power of terminal units (fan coil units, air handling units) is not included. Values for TC do not include the loss of capacity due to the interior piping loop pump heat or air terminal unit fan heat.

Note the ELT in heating is 104°F (40°C). Thus, LLT would be approximately 114°F (46°C), and both heating capacity and COP should be corrected if coils are specified for higher (or lower) temperatures. In cooling, the ELT of 53.6°F (12°C) and resulting LLT of approximately 43.6°F (6°C) are nearly the same as standard values used for chilled-water coils (54°/44°F).

Engineers, Activate Your BS Detectors Variable-Speed Heat Pumps are Only More Efficient when Loop Temperatures are Mild and Air and Water Flows are Very High

	S								Single	gle Speed Water-to-Air Heat Pumps							
						Wate	er Loop	Heat P	ump	Groun	nd Wate	er Heat	Pump	Groui	nd Loo	p Heat	Pump
						Clg - 8	6°F ELT	Htg - 6	8°F ELT	Clg - 5	9°F ELT	Htg - 5	0°F ELT	Clg-77	"°F (FL)	Htg-32	°F (FL)
	Mod	Load	cf	m	gpm	TC	EER	HC	COP	TC	EER	HC	COP	TC	EER	HC	COP
	15	Full	50	00	4	14.4	16.5	18.5	5.3	16.7	27.0	15.5	4.7	15.0	18.1	12.0	4.0
	18	Full	60	00	5	18.0	16.5	23.0	5.3	21.0	26.8	19.0	4.7	18.5	19.0	14.7	4.1
	22	Full	8	50	8	20.7	0.7 17.5 25.3 6.2 23.5 30.0 19.8							21.7	21.0	15.0	4.0
	30	Full	90	00	8	28.3	.3 19.2 32.7 5.8 31.3 28.8 25.8 5.0 29.4 21.9 20.0								4.0		
	36	Full	12	.00	9	34.5	19.6	38.0	6.1	37.2	30.1	30.3	5.2	35.0	22.0	24.1	4.4
	42	Full	13	00	11	40.6	19.2	44.1	5.9	45.2	29.5	34.9	5.2	42.0	21.4	27.5	4.2
	48	Full	15	00	12	47.0	17.5	55.4	5.5	52.0	26.1	45.1	4.8	49.3	19.7	35.3	4.0
	60	Full	18	00	15	64.3	17.2	69.8	5.4	72.0	26.1	55.1	4.7	66.8	19.5	43.3	3.9
	70	Full	20	00	18	70.6	16.0	84.3	5.1	79.1	23.8	66.1	4.4	73.2	18.2	52.0	3.7
14()0 cfm	/ton	cf	<mark>m</mark> 10 g	pm/ton		0.9 ton	S S	Variab	le Spee	d Wate	er-to-Ai	ir Heat	Pumps	Com	oressor	Overspe
			Clg.	Htg.		WLHP	8 GWH	P Part-	Load (F	PL) ELTs	s = Full-	Load (F	[:] L) ELTs	Clg-68	°F (PL)	Htg-1	F(PL)
	36	Full	1300	1500	9	32.0	18.0	50.0	5.3	38.0	31.5	41.0	4.6	36.0	22.0	32.0	3.5
	36	Part	1300	1500	9	11.0	21.0	17.0	7.5	13.0	47.2	14.0	5.9	14.0	37.0	13.0	5.3
	48	Full	1500	1800	12	41.0	17.6	67.0	5.0	49.0	31.7	55.0	4.3	46.0	21.7	43.0	3.6
	48	Part	1500	1800	12	16.0	22.5	24.0	7.6	19.2	53.2	19.0	5.9	19.0	41.0	16.0	5.3
	60	Full	1800	2200	15	50.0 16.3 78.0 4.8 60.0 28.6 65.0 4.3 56.0 19.4 51.0 3.									3.5		
	60	Part	1800	2200	15	20.0 21.7 29.0 7.5 23.2 45.8 23.0 6.0 23.0 36.0 20.0 5.1											
	Cooli	ng EAT	=80.6°F	(db)/66	5.2°F (w	/b), Hea	ating EA	T= 6 <mark>8°</mark>	F (db),	TC & H	C in Bti	u/h × 10	000, EEF	R in Btu	ı/W-h,	COP in	W/W

© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

Converting Full Load Rated Performance* to Actual Performance—Three Options

- Long way: Lots of manual calculation
- Short cut: Single point correction**—Less accurate
 - Multiply rated TC by 0.93
 - Multiply rated EER by 0.80
 - Multiply rated HC by 1.03
 - Multiply rated COP by 0.89
- Spreadsheet software: Faster and more accurate

*Corrections for part-load operation not possible because rated part-load airflow rates are typically too high to extrapolate down to useful values.

**Correct from rated conditions to EAT (db/wb) from 80.6°/66.2°F to 75°/63°F (24°/17°C) and ESP from 0.0 in. w.g. to 0.5 in. w.g. (125 Pa)

Another Tool WAHP Performance Correction Spreadsheet

Rated Performance					C32	COP32	2 HC50	COP50	HC68	COP6	8	
Raled Performance				4	3.3	3.9	55.1	4.7	69.8	5.4		
gpm	cfm	TC59	EER!	59	Т	277	SC77	EER77	7 T	C86	Ε	ER86
15	15 1800 72.0 26.			1	6	6.8		19.5	6	4.3		17.2

Corrected Performance (includes fan and pump power, fan heat)

GLHP Rate	GLHP Rated Performance				Conditions		Cor	rected Capa	c <mark>ity, Powe</mark>	r, EER and (СОР
Model#	ECM-60			ELTClg	80.0	°F		Pump(s) nc	t Included	Pump(s)	Included
TC-77°F	66.8	kBtu/h		ELTHtg	43.0	°F	тс	61.6	kBtu/h	61.6	kBtu/h
SC-77°F	0	kBtu/h		EATdbClg	75.0	°F	SC_Est	41.6	kBtu/h	41.6	kBtu/h
EER-77°F	19.5	Btu/W-h		EATwbClg	63.0	°F	SHR	0.68		0.68	
HC-32°F	43.3	kBtu/h		EATHtg	70.0	°F	EERnoCF	18.7	Btu/W-h		Btu/W-h
COP-32°F	3.9	W/W		Actgpm	15.0	gpm	kWc	4.02	kW	4.40	kW
WtrFlow	15.0	gpm		Actcfm	1800	cfm	EER	15.3	Btu/W-h	14.0	Btu/W-h
AirFlow	1800	cfm		Fan Power a	and Heat Cor	rection***	НС	52.0	kBtu/h	52.0	kBtu/h
GpmPTonR	2.7			FanMotor	ECMwFCBlade		COPnoCf	4.39	W/W		W/W
CfmPTonR	323			ESP	0.5	in. water	kWh	3.95	kW	4.34	kW
GpmPTonA	2.7			FilterLoss	0.3	in. water	СОР	3.85	W/W	3.51	W/W
				WAEff	30%						
				kWFan	0.51	kW		Optior	nal Pump P	ower	
				FanHeat	1.7	kBtu/h		kWpump	0.385	kW	

Water-to-Water Heat Pump Performance (I-P) Based on 53.6°F (12°C) for Cooling and 104°F (40°C) for Heating

Building Loop Entering Liquid Temperatures (ELTs)

				Water-to-Water Heat Pumps										
	Liquid	flows	Wate	er Loop	Heat P	ump	Groun	d Wate	er Heat	Pump	Grou	nd Loo	p Heat	Pump
	Source	Bldg.	Clg - 86°F ELT Htg - 68°F El				Clg - 59°F ELT Htg - 50°F ELT				Clg-77°F (FL)		Htg-32°F (FL)	
Mod	gpm	gpm	TC	EER	HC	COP	TC	EER	HC	COP	TC	EER	HC	COP
96	23	23	93	14.6	125	4.0	105	22.0	103	3.3	100	16.8	82	2.8
108	28	28	103	14.0	142	4.0	123	21.6	118	3.3	114	16.2	93	3.0
120	32	32	128	13.8	175	3.8	151	21.0	145	3.2	139	16.0	115	2.8
140	36	36	143	14.5	193	4.2	166	22.5	160	3.8	155	17.0	127	3.1
180	45	45	170	14.0	209	3.9	183	20.0	189	3.5	177	15.8	153	2.8
210	52	52	202	14.8	257	4.2	227	21.8	219	3.8	212	17.0	173	3.1
240	60	60	222	13.3	286	3.9	257	20.0	244	3.5	242	15.5	193	2.8
360	86	86	335	14.3	453	4.3	na	na	na	na	351	16.2	297	3.2
540	135	135	533	15.2	691	4.3	na	na	na	na	559	16.4	486	3.3

Bldg. Loop: Cooling ELT=53.6°F, Heating ELT= 104°F. TC & HC in Btu/h × 1000, EER in Btu/W-h, COP in W/W

Correctio	n Factors fr	om Rated F	leating Cap	acity and C	OP for Othe	er Building I	Loop ELTs				
ELT = 90	ELT = 90°F(32°C) ELT = 100°F(38°C				38°C) ELT = 110°F(43°C) ELT = 120°						
HC	СОР	HC	СОР	HC	СОР	HC	СОР				
1.04 1.20 1.01 1.04 0.98 0.94 0.95 0.83											

© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

EIA/DOE Commercial Building Energy Consumption Survey (CBECS)—2003 and 2012

All Commercial Buildings Average Unitary Air Conditioners Individual Room Air-Conditioners Packaged Air-Conditioners Heat Pumps Packaged Heat Pumps Energy Mgmt/Control Systems Variable Air Volume Systems* Central Chilled Water Systems

*Not reported in 2012 Survey

Energy Recovery Unit: An Effective GSHP Loop Reduction Device

But ERUs tend to be more effective in reducing heating requirements than cooling (larger Δ 7s and added fan heat). Thus, the annual heat imbalance is further aggravated in applications with equal or greater cooling requirements compared to heating.

Zone Ventilation Air Delivery Options and Issues with Unitary Heat Pumps

49

Questions?

Comments?

Session 3 APPLIED GCHP DESIGN

Basic Equations

$$q_{cond}/q_{lc} = \frac{EER + 3.412}{EER} = \frac{COP_c + 1.0}{COP_c}$$

$$q_{evap}/q_{lh} = \frac{COP_h - 1}{COP_h}$$

$$q_{a} = \frac{q_{cond} \times EFLH_{c} + q_{evap} \times EFLH_{h}}{8760}$$

The condensing heat rate (q_{cond}) is the heat removed from the building (cooling load = q_{lc}) plus the heat of compression, and is the amount rejected to the ground in cooling.

Likewise, the evaporating heat rate (q_{evap}) is the heat delivered to the building (heating required = q_{lh}) less the heat of compression, and is the amount removed from the ground in heating.

The amount of annual heat imbalance to the ground is estimated to account for long-term temperature change by determining the average annual heat rate (q_a) .

52

$$L_{bore} = \frac{q \times R_{ov}}{\left(t_g - t_w\right)}$$

The total bore length of the vertical ground heat exchanger is determined by multiplying the heat rate (q) by the overall resistance (R_{ov}) divided by the temperature difference between the ground (t_g) and the water in the heat exchanger (t_w) .

Overall Bore and Ground Resistance Components

U-tube Locations in Bore

 $R_{\rm h}$ = Bore Resistance $R_b =$ Bore Resistance $R_b =$ Grout Resistance $R_b =$ Grout Resistance R_{b}^{T} = Boundary Layer Resistance F_{sc} = U-Tube Short-Circuit Factor

 $\begin{array}{ll} R_g = \mbox{Ground Resistance} & t_{wi} = \mbox{Ground Inlet Temperature} \\ R_g = \mbox{Annual Ground Resistance} & t_{wo} = \mbox{Ground Outlet Temperature} \\ R_g = \mbox{Monthly Ground Resistance} & t_g = \mbox{Undisturbed Ground Temperature} \\ t_p = \mbox{Long-term Temperature Penalty} \end{array}$

13-Step Design Procedure

- 1. Calculate cooling load and heat loss
- 2. Modify building design if loads are high
- 3. Estimate annual heat imbalance (cooling heat rejection/heating absorption) for potential long-term effects
- 4. Select preliminary loop operating temperatures
- 5. Correct equipment rated performance to actual operating conditions
- 6. Select heat pumps to meet loads—locate units to minimize duct cost, pump energy, and noise
- 7. Arrange units in circuits (unitary, one pipe, common, central)
- 8. Determine thermal properties of source—GCHP (TP test), GWHP (well test), SWHP (depth, volume, temperature)

13-Step Design Procedure (cont.)

- Select initial design option: GCHP (bore depth, separation, grout quality, U-tube HEXs per circuit); GWHP (supply well location, separation of injection well, optimum water well flow); SWHPs (length of individual coils, number of coils or plate HEXs per circuit, location in reservoir)
- 10. Determine optimum heat exchanger dimensions
- Evaluate other options if initial design unsatisfactory (different loop temperatures, heat pumps, grouts, U-tubes, circuits, bore depths, bore separation, etc.)
- 12. Lay out exterior and interior piping network and find head loss through critical path and select pumps and calculate grade (A, B, C, D, F) based on pump power/system capacity
- 13. Calculate *system* efficiency (include all equipment) and redesign if efficiency is not superior to conventional HVAC

© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

56

Building and Site Conditions—St. Louis

- Indoor temperatures
 - Cooling: 75°F (24°C) dry bulb, 63°F (17°C) wet bulb
 - Heating: 70°F (21°C)
- Outdoor temperatures
 - Cooling (0.4%): 96°F (36°C) dry bulb, 77°F (25°C) wet bulb
 - Heating (99.6%): 6°F (-14°C)
- US Geological Survey maps indicate local deep ground temperature is around 58°F to 59°F

Step 1: Calculate Building Cooling and Heating Requirements

These results obtained with TideLoad15.xlsm, an old fashioned CLTD spreadsheet (but it's free)

	Cooling Loads in kBtu/h Total Heat Loss in kBtu/						h		
	Zn	8am-Noon	Noon-4pm	4pm-8pm	8pm-8am	8am-Noon	Noon-4pm	4pm-8pm	8pm-8am
N. West	1	19.1	28.6	14.9	3.9	20.3	15.8	8.8	10.4
N. East	2	28.6	29.4	15.4	4.8	22.6	17.6	10.4	12.3
West	3	21.3	37.0	22.1	5.1	21.8	17.0	8.3	9.9
N. Core	4	34.2	44.7	11.8	4.7	32.0	24.9	5.3	6.3
S. Core	5	34.2	44.7	11.8	4.7	32.0	24.9	5.3	6.3
Conf	6	35.1	38.3	8.2	4.2	33.3	26.0	5.5	6.5
S.West	7	13.8	21.7	14.2	3.9	13.9	10.8	7.0	8.3
S.East	8	18.3	21.6	13.1	3.9	15.4	12.0	8.2	9.7
Total Bui	Iding	205	266	112	35	191	149	59	70
	5								
	Ŭ		Cooling Loa	ds in kW			Total Heat L	oss in kW	
	Zn	8am-Noon	Cooling Loa Noon-4pm	ds in kW 4pm-8pm	8pm-8am	8am-Noon	Total Heat L Noon-4pm	oss in kW 4pm-8pm	8pm-8am
N. West	Zn 1	8am-Noon 5.6	Cooling Loa Noon-4pm 8.4	ds in kW 4pm-8pm 4.4	8pm-8am 1.1	8am-Noon 5.9	Total Heat L Noon-4pm 4.6	oss in kW 4pm-8pm 2.6	8pm-8am 3.0
N. West N. East	Zn 1 2	8am-Noon 5.6 8.4	Cooling Loa Noon-4pm 8.4 8.6	ds in kW 4pm-8pm 4.4 4.5	8pm-8am 1.1 1.4	8am-Noon 5.9 6.6	Total Heat L Noon-4pm 4.6 5.2	.oss in kW 4pm-8pm 2.6 3.0	8pm-8am 3.0 3.6
N. West N. East West	Zn 1 2 3	8am-Noon 5.6 8.4 6.3	Cooling Loa Noon-4pm 8.4 8.6 10.9	ds in kW 4pm-8pm 4.4 4.5 6.5	8pm-8am 1.1 1.4 1.5	8am-Noon 5.9 6.6 6.4	Total Heat L Noon-4pm 4.6 5.2 5.0	oss in kW 4pm-8pm 2.6 3.0 2.4	8pm-8am 3.0 3.6 2.9
N. West N. East West N. Core	Zn 1 2 3 4	8am-Noon 5.6 8.4 6.3 10.0	Cooling Loa Noon-4pm 8.4 8.6 10.9 13.1	ds in kW 4pm-8pm 4.4 4.5 6.5 3.5	8pm-8am 1.1 1.4 1.5 1.4	8am-Noon 5.9 6.6 6.4 9.4	Total Heat L Noon-4pm 4.6 5.2 5.0 7.3	oss in kW 4pm-8pm 2.6 3.0 2.4 1.5	8pm-8am 3.0 3.6 2.9 1.8
N. West N. East West N. Core S. Core	Zn 1 2 3 4 5	8am-Noon 5.6 8.4 6.3 10.0 10.0	Cooling Loa Noon-4pm 8.4 8.6 10.9 13.1 13.1	ds in kW 4pm-8pm 4.4 4.5 6.5 3.5 3.5	8pm-8am 1.1 1.4 1.5 1.4 1.4	8am-Noon 5.9 6.6 6.4 9.4 9.4	Total Heat L Noon-4pm 4.6 5.2 5.0 7.3 7.3	.oss in kW 4pm-8pm 2.6 3.0 2.4 1.5 1.5	8pm-8am 3.0 3.6 2.9 1.8 1.8
N. West N. East West N. Core S. Core Conf	Zn 1 2 3 4 5 6	8am-Noon 5.6 8.4 6.3 10.0 10.0 10.0 10.3	Cooling Loa Noon-4pm 8.4 8.6 10.9 13.1 13.1 11.2	ds in kW 4pm-8pm 4.4 4.5 6.5 3.5 3.5 3.5 2.4	8pm-8am 1.1 1.4 1.5 1.4 1.4 1.4 1.2	8am-Noon 5.9 6.6 6.4 9.4 9.4 9.4 9.8	Total Heat L Noon-4pm 4.6 5.2 5.0 7.3 7.3 7.6	oss in kW 4pm-8pm 2.6 3.0 2.4 1.5 1.5 1.5	8pm-8am 3.0 3.6 2.9 1.8 1.8 1.8 1.9
N. West N. East West N. Core S. Core Conf S.West	Zn 1 2 3 4 5 6 7	8am-Noon 5.6 8.4 6.3 10.0 10.0 10.3 4.0	Cooling Loa Noon-4pm 8.4 8.6 10.9 13.1 13.1 11.2 6.4	ds in kW 4pm-8pm 4.4 4.5 6.5 3.5 3.5 2.4 4.2	8pm-8am 1.1 1.4 1.5 1.4 1.4 1.2 1.1	8am-Noon 5.9 6.6 6.4 9.4 9.4 9.8 4.1	Total Heat L Noon-4pm 4.6 5.2 5.0 7.3 7.3 7.6 3.2	oss in kW 4pm-8pm 2.6 3.0 2.4 1.5 1.5 1.6 2.1	8pm-8am 3.0 3.6 2.9 1.8 1.8 1.9 2.4
N. West N. East West N. Core S. Core Conf S.West S.East	Zn 1 2 3 4 5 6 7 8	8am-Noon 5.6 8.4 6.3 10.0 10.0 10.3 4.0 5.4	Cooling Loa Noon-4pm 8.4 8.6 10.9 13.1 13.1 13.1 11.2 6.4 6.3	ds in kW 4pm-8pm 4.4 4.5 6.5 3.5 3.5 2.4 4.2 3.8	8pm-8am 1.1 1.4 1.5 1.4 1.4 1.4 1.2 1.1 1.2	8am-Noon 5.9 6.6 6.4 9.4 9.4 9.4 9.8 4.1 4.5	Total Heat L Noon-4pm 4.6 5.2 5.0 7.3 7.3 7.3 7.6 3.2 3.5	oss in kW 4pm-8pm 2.6 3.0 2.4 1.5 1.5 1.6 2.1 2.4	8pm-8am 3.0 3.6 2.9 1.8 1.8 1.9 2.4 2.8

$q_{lc} = 266 \text{ kBtu/h or } 22.2 \text{ tons } (78 \text{ kW})$ $q_{hc} = 191 \text{ kBtu/h } (56 \text{ kW})$

58

Step 2: Provide Alternatives to Reduce Cooling and Heating Requirements (Add ERU)

		C	Cooling Load	s in kBtu/h		To	otal Heat Lo	ss in kBtu/	h
	Zn	8am-Noon	Noon-4pm	4pm-8pm	8pm-8am	8am-Noon	Noon-4pm	4pm-8pm	8pm-8am
N. West	1	16.8	25.7	14.9	3.8	15.0	11.7	8.4	10.0
N. East	2	26.3	26.5	15.5	4.7	17.4	13.5	10.0	11.8
West	3	18.4	33.4	22.2	5.1	15.3	11.9	7.9	9.3
N. Core	4	27.2	36.1	11.9	4.6	16.3	12.7	4.2	4.9
S. Core	5	27.2	36.1	11.9	4.6	16.3	12.7	4.2	4.9
Conf	6	27.8	29.3	8.3	4.0	17.0	13.2	4.3	5.1
S.West	7	12.6	20.3	14.3	3.8	11.3	8.8	6.8	8.1
S.East	8	17.1	20.1	13.1	3.9	12.8	10.0	8.0	9.4
Total Bui	Iding	173	227	112	35	(121)	95	54	64
			Cooling Loa	ids in kW			Total Heat L	loss in kW	
	Zn	8am-Noon	Noon-4pm	4pm-8pm	8pm-8am	8am-Noon	Noon-4pm	4pm-8pm	8pm-8am
N. West	1	4.9	7.5	4.4	1.1	4.4	3.4	2.5	2.9
N. East	2	7.7	7.8	4.5	1.4	5.1	4.0	2.9	3.5
West	3	5.4	9.8	6.5	1.5	4.5	3.5	2.3	2.7
N. Core	4	8.0	10.6	3.5	1.3	4.8	3.7	1.2	1.4
S. Core	5	8.0	10.6	3.5	1.3	4.8	3.7	1.2	1.4
Conf	6	8.2	8.6	2.4	1.2	5.0	3.9	1.3	1.5
S.West	7	3.7	5.9	4.2	1.1	3.3	2.6	2.0	2.4
S.East	8	5.0	5.9	3.9	1.1	3.8	2.9	2.3	2.8

 $q_{lc} = 227 \text{ kBtu/h or } 18.9 \text{ tons } (67 \text{ kW})$ $q_{hc} = 121 \text{ kBtu/h } (36 \text{ kW})$ Step 3: Most Folks have a Program that Calculates Off-Peak Loads but Use Estimated PLFs and ASHRAE Equivalent Full Load Hours (EFLH)

Caution is advised in using programs provided by manufacturers because the operating hours often exceed values found in the ASHRAE RP-1120.

Equiv	alent	Full I	oad	Hours	s (EFL	.H)
Building Type	Nine to T	en Month	Office – 8	am to 5 pm	Retail – 8 a	m to 10 pm
	Sch	ools	Five Day	rs / Week	Seven Day	ys / Week
Occupied Hours	1300 ·	- 1500	2200	- 2400	2800	- 3600
Location	Cooling	Heating	Cooling	Heating	Cooling	Heating
Atlanta	590-830	200-290	950-1360	480-690	1300-1860	380-600
Baltimore	410-610	320-460	690-1080	720-890	880-1480	570-770
Bismarck	150-250	460-500	250-540	950-990	340-780	810-900
Boston	300-510	450-520	450-970	960-1000	610-1380	760-870
Charleston, WV	430-570	310-440	620-1140	770-840	820-1600	620-730
Charlotte	510-730	200-320	940-1340	530-780	1280-1830	420-670
Chicago	280-410	390-470	420-780	820-920	550-1090	670-810
Dallas	620-890	120-200	1100-1580	340-520	1460-2090	280-440
Detroit	230-360	400-480	390-820	970-1020	530-1170	790-900
Fairbanks, AK	25-50	560-630	60-200	1050-1170	110-320	930-1090
Great Falls, MT	130-220	360-430	210-490	820-890	290-710	680-800
Hilo, HI	970-1390	0	1800-2580	15-25	2260-3370	0-20
Houston	670-1000	90-130	1240-1770	250-350	1600-2290	190-300
Indianapolis	380-560	400-480	560-1000	840-920	730-1410	690-820
Los Angeles	610-910	80-160	1140-1670	370-580	1650-2350	250-440
Louisville	470-670	290-430	770-1250	710-830	1000-1720	570-720
Madison	210-310	390-470	320-640	840-900	420-900	700-800
Memphis	580-830	170-240	950-1350	420-600	1250-1780	330-510
Miami	950-1300	10	1500-2150	35-45	1920-2740	25-40
Minneapolis	200-300	420-500	320-610	860-950	430-870	720-860
Montgomery	630-910	120-180	1060-1510	330-470	1390-1990	250-400
Nashville	520-740	250-320	830-1280	590-680	1030-1710	470-590
New Orleans	690-990	70-110	1200-1720	230-320	1570-2240	160-260
New York	360-550	350-440	540-1040	790-870	720-1480	630-760
Omaha	310-440	330-400	480-820	720-800	610-1130	600-720
Phoenix	710-1020	70-110	1130-1610	210-290	1430-2090	170-250
Pittsburgh	300-530	470-500	440-920	910-950	600-1310	750-840
Portland, ME	190-300	400-480	310-630	880-980	410-900	710-870
Richmond, VA	510-730	270-410	880-1310	660-820	1110-1770	520-710
Sacramento	600-850	220-360	1000-1430	640-990	1390-2020	480-830
Salt Lake City	410-710	520-540	510-1090	1040-1060	660-1520	830-930
Seattle	260-460	460-650	440-1200	1270-1370	710-1860	960-1170
St. Louis	390-550	280-400	680-1100	710-800	850-1500	570-700
Tampa	780-1110	40-60	1440-2000	140-190	1780-2560	100-160
Tulsa	540-770	240-300	830-1300	560-620	1030-1730	450-540

Step 4: Loop Operating Temperature and Liquid Flow Rates to Optimize Performance/First-Cost Trade-Off

- In cooling temperature entering heat pump (ELT) = 20°F to 30°F (11°C to 17°C) above the normal deep ground temperature (t_q).
- In heating temperature entering heat pump (ELT) = 10°F to 15°F (6°C to 8°C) below the normal deep ground temperature (t_a).
- Liquid flow rates 2.5 to 3.0 gpm/ton (2.7 to 3.2 Lpm/kW)

Step 5: WAHP Performance Correction (Free) (Other options: manual calculations or shortcut method from Session 2)

Rated	Rated Performance					COP32	2	HC50	COP50	HC68	COP6	8	
Rated Performance				4	3.3	3.9		55.1	4.7	69.8	5.4		
gpm	cfm	TC59	EERS	59	т	277	S	C77	EER77	' T	C86	EER	₹86
15	15 1800 72.0 26.		1	6	6.8			19.5	6	4.3	17	.2	

Corrected Performance (includes fan and pump power, fan heat)

GLHP Rate	GLHP Rated Performance			Operating	Conditions		Cori	rected Capa	c <mark>ity, Powe</mark> l	r, EER and (СОР
Model#	ECM-60			ELTClg	80.0	°F		Pump(s) no	t Included	Pump(s)	Included
TC-77°F	66.8	kBtu/h		ELTHtg	43.0	°F	тс	61.6	kBtu/h	61.6	kBtu/h
SC-77°F	0	kBtu/h		EATdbClg	75.0	°F	SC_Est	41.6	kBtu/h	41.6	kBtu/h
EER-77°F	19.5	Btu/W-h		EATwbClg	63.0	°F	SHR	0.68		0.68	
HC-32°F	43.3	kBtu/h		EATHtg	70.0	°F	EERnoCF	18.7	Btu/W-h		Btu/W-h
COP-32°F	3.9	W/W		Actgpm	15.0	gpm	kWc	4.02	kW	4.40	kW
WtrFlow	15.0	gpm		Actcfm	1800	cfm	EER	15.3	Btu/W-h	14.0	Btu/W-h
AirFlow	1800	cfm		Fan Power	and Heat Cori	rection***	НС	52.0	kBtu/h	52.0	kBtu/h
GpmPTonR	2.7			FanMotor	ECMwFCBlade		COPnoCf	4.39	W/W		W/W
CfmPTonR	323			ESP	0.5	in. water	kWh	3.95	kW	4.34	kW
GpmPTonA	2.7			FilterLoss	0.3	in. water	СОР	3.85	W/W	3.51	W/W
				WAEff	30%						
				kWFan	0.51	kW		Optior	nal Pump P	ower	
				FanHeat	1.7	kBtu/h		kWpump	0.385	kW	

© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

Step 6: Select and Locate Heat Pumps

© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

63

Step 7: Arrange Heat Pumps in Ground Loop Circuits Initial Design: Two Common Loops with Four Heat Pumps Each

© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

64

Step 8: Thermal Property (TP*) Test Equipment

Natural ground temperature (t_g) found at start of test before heating elements are activated

*Often called a *thermal conductivity (TC)* test, but natural ground temperature (t_g) and thermal diffusivity (α_g) needed

Step 8: TP Test Results Converted to Natural Log of Time Versus Average Temperature to Determine Ground Thermal Conductivity (k_a)

© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

Note:

Previous versions of this seminar detailed hand calculation procedures for system design. This proved difficult to complete during a three-hour seminar. The following slides are taken from a free computer program (GshpCalc) based on the calculations. Attendees wishing to receive copies of the hand calculations or the computer program may find them on the same site as the downloadable course materials for this course. Additional instructions on Slide 132.

Steps 1, 2, and 3: Enter Zone Load Calculation Results , Optimize if Values High , and Enter EFLHours

Step 4 Select Loop Operating Temperatures and Flow Rates

Design Temperatures and Flows						
	Next Screen					
Design Heat Pump Entering Water Temperature (EWT)						
Cooling: 86.0 *F = 30.0 *C	Heating: 45.0 *F = 7.2 *C					
Design Water Loop Flow Rate: 3.00 GPM/Ton* = 3.23 LPM/kW* * per ton (or kW) of heat pump capacity NOT per ton of peak block load						
Typical Heat Pump Entering Water Temperatures						
Cooling Vertical Add 20 to 35°F to Ground Temp Ground Add 11 to 19°C to Ground Temp	Heating Subtract 10 to 15*F from Ground Temp Subtract 6 to 8*C from Ground Temp					
Ground Add 10 to 25*F to Ground Water Temp Water Add 6 to 14*C to Ground Water Temp	Subtract 6 to 18*F from Ground Water Temp Subtract 3 to 10*C from Ground Water Temp					
Surface Add 8 to 15*F to Max Surface Water Temp Water Add 4 to 8*C to Max Surface Water Temp	Subtract 5 to 10*F from Min Surface Water Temp Subtract 3 to 6*C from Min Surface Water Temp					

Step 5 Select Heat Pump Manufacturer (from a List) and Correct Performance to Water and Air Conditions (Done Automatically)

Heat Pump Selections and Required Flow Rates						
	Heat Pump File Data	Print Heat Pump Data	Load Heat Pump Data	Next Screen		
Manufacturer XYZ Heat Pump Models 15 18 22 30 36 42 48 60 70	with ECM Zone Mode	for fan el# Number of	Units GPM/zone	e LPM/zone		
	2 3 3 4		8.0 9.8	30.3 37.2		
	4 4	.2 1	9.8	37.2		
Click on the Load Heat Pump Data button to show available heat pump product lines.						
Select zone and press F2 (or double click mouse) to change heat pump model for that zone						

70

Step 8 Enter Ground Thermal Properties (Steps 6 and 7, See Previous Slides 64 and 65)

Ground Temperatures and Properties						
Rock Property Table	Soil Property Table		Main Screen	Next Screen		
Undisturbed Temperature: 62.0 'F = 16.7 'C USGS Ground Water Temperature Map						
Thermal Conductiv	vity: 1.20 Btu/hr-	ft-*F = 2.08 W	'/m-K	Conductivity "Averager"		
The second Diffusion		0.074		Diffusivity "Averager"		
	Thermal Dinusivity. 0.00 it 270ay = 0.074 m 270ay		2/uay	Diffusivity Calculator		
Recommendations for Thermal Property Testing						

Step 9 Select Ground Heat Exchanger Specifications

Bore Hole / Pipe Resistance					
Grout /Fill Thermal Conductivity	Main Screen	Next Screen			
Bore Hole Diameter = 6.0 inch = 15.2 cm	ООСВ	• B/C			
Grout/Fill Conductivity = 0.90 Btu/hr-ft-*F = 1.56 W/m-K	$\left(\begin{array}{c} 0 \end{array} \right) \circ \circ \left(\begin{array}{c} 0 \end{array} \right)$	OOO OOOO U-tube			
HDPE U-Tube Nominal Diameter © 3/4 inch © 1 inch 11.0 SDR © 1-1/4 inch © 1-1/2 inch HPDE Tube Thermal Conductivity = 0.22 Btu/hr-ft-*F = 0.38 W/m-K					
Tube Flow Regime O Turbulent O Transition	O Laminar				
Resulting Eqv. Dia. =0.50ft =0.15mBore Resistance =0.188hr-ft-*F/Btu =0.109m-K/W	For U-tube heat exch non-standard tubing exchanger configura calculated bore resis	angers with (or other heat tions), you can enter stance directly.			
Step 9 Continued Select Ground Heat Exchanger Specifications

Ground Field Arra	ingemen	nt	
	Mair	n Screen	Next Screen
Vertical Grid Arrangement Number of Ro w s Wide = 2 Number of Ro w s Long = 5		Separat between v 20.0 ft	ion Distance √ertical Bores = 6.1 m
		Number Parallel	of Bores per Loop = 1
One bore Two bores per Three bore per loop loop per loop	S		

Preliminary Step 12 Specify Pump (to Include in System Heat Balance Calculations)

Pump Input Screen	
	Next Screen
Pump Motor Efficiency = 85 %	Required EPACT Motor Efficiencies
Pump Estimator	
Pump Head = 60 ft water = 18.3 m water Pump Efficiency = 70 %	Required Pump Motor Power 0.7 hp = 0.5 kW

- Users may leave pump motor power as zero on the first iteration.

- These can be added after the required motor sizes are calculated.

However, system efficiencies (EER, COP) and demand will include only
power to compressors and indoor fans until this screen is completed.

Options Screen to Complete Initial Design or Make Changes

Vertical Closed Ground Loc	p Option S	creen		
Design Water Temperatures/Flow Rates		Quit Program	Ne w Loop Type	
Load Existing Ground Loop Files		Change User Info	Printer Setup	
Ground Temperatures or Properties		Water	Heating	
Bore Hole / Pipe Resistance	-	Zone Data –		
Vertical Bore Pattern/Separation		Load	Change	
Optional Pump Motor Information		Save	View	
Select/View Heat Pump Model		New B	uilding	
Calculate Required Bore Lengths		Split	Zones	

Steps 10, 11, and 13* Complete Initial Design and Calculate System Efficiency

	Vertical Closed	d Ground Loop	Design Lengths	s - U.S Units						
Design Hybrid GCHP	Long Term Temps	Save Input to File	Metric Units	Print Values	Next Screen					
Required BO (Design Required I	RE length with m based on COOL BORE lengths wit	inimal ground NG mode - ne th high rates o	water movemen t annual heat re f groundwater n	nt = 2350 ft (23 ejection to gro novement (or	i6 ft/bore) ound) year 1)					
Coo	oling: L= 2190 ft (2	20 ft/bore), H	eating: L= 2150	ft (215 ft/bore))					
*** Heat Pump Series: WaterFurnace Envision with ECM for fan *** Temperatures Unit Inlet (cooling) = 86.0*F Unit Outlet (cooling) = 95.6*F Unit Inlet (heating) = 55.0*F Unit Outlet (heating) = 55.0*F Unit Outlet (heating) = 48.6*F Normal ground temp = 62.0*F Loop Pump Head/Flow Rate = 60 ft / 30 gpm Loop Pump Power/Demand = 0.7 hp / 0.6 kW										
U-tube Diamete Separation dist Grid = 2 wide b Grout Conductiv Bore Diameter	er = 1.00 inch = 20.0 ft y 5 deep vity = 0.90 Btu/hr- = 6.00 inches	ft-*F Gro	und Data rmal Conductiv rmal Diffusivity und Temperatu	rity = 1.20 Btu/ = 0.80 ft^2/d re = 62.0 *F	hr-ft-⁺F ¤y					

*Details of Step 12 (Calculate system head loss and specify pump(s) addressed in next session.

76

77

Summary of Alternatives

Original Design: System EER = 13.9, COP = 4.0, ELT(clg) = 86°F (30°C), ELT(htg) = 50°F (10°C), nineteen vertical bores at 4800 ft (1460 m) total, 1-inch nominal (32 mm) HDPE U-tubes, 20 ft. (6 m) bore separation, two ground loop circuits (10 bore and 9 bore), 0.90 Btu/h-ft-°F (1.56 W/m-K) grout conductivity, eight 200-W pumps, on-off controls with check valves.

Design alternative	Ground loop size	Efficiency	Other
Eight unitary loop	No change	1% Increase	Check valves no longer required
One-pipe loop 1.5-hp (1.1 kW) & 12 circulator pumps	1% Increase	1% Decrease	Central pump(s) added
Central loop with single 2-hp (1.5 kW) pump	1% Increase	No change	2-way heat pump valves , VS pump
Increase grout conductivity to 1.5 Btu/h-ft-°F	9.3% Decrease	No change	Higher material cost
Use double U-tubes in vertical bores	12.6% Decrease	No change	Addition header fittings required
Double U-tubes + 1.5 Btu/h-ft-°F grout	17.8% Decrease	No change	Addition header fittings required
Double U-tube conductivity (to 0.44 Btu/h-ft-°F)	12.6% Decrease	No change	Higher material cost
Double U-tube cond. + 1.5 Btu/h-ft-°F grout	14.4% Decrease	No change	Much higher material cost
Reduce grout conductivity to 0.42 Btu/h-ft-°F	23% Increase	No change	Grout mat'l weight reduced 400%
Increase bore separation distance to 25 ft. (7.6 m)	8 to 12% Decrease	No change	Increase in req'd ground area by 56%
Decrease bore separation distance to 15 ft. (4.6 m)	21 to 44% Increase	No change	Increased possiblity of cross-drilling
Increase ELT(clg) to 95°F (35°C)	20% Decrease	13% Decrease	Heat pumps only rated to ELT = 86°F
Decrease ELT(clg) to 77°F (25°C)	38% Increase	9% Increase	Much higher ground loop cost
Hybrid-System (fluid cooler)	60% Decrease	9% Decrease	Much higher maintenance cost
Copper U-tubes and 5.0 Btu/h-ft-°F grout	21% Decrease	No change	Much higher cost, grout not available

Questions? Comments? Discussion?

Session 4 PIPING AND PUMPS FOR CLOSED-LOOP GROUND-SOURCE HEAT PUMPS

81

Why Some GSHP Systems Use More Energy than Advertised

Expanded Table for Pump Power Grade

Installed Pump Power	Power into Pump	GRADE	Available Head
	Motor		w/70% Eff. Pump at
			3 gpm/ton
< 5 hp/100 tons	< 45 W/ton	Α	< 46 ft. of water
$5 < hp/100 \text{ tons} \le 7.5$	45 < W/ton ≤ 65	В	46 to 69 ft. of water
$7.5 < hp/100 \text{ tons} \le 10$	65 < W/ton ≤ 85	С	69 to 92 ft. of water
$10 < hp/100 \text{ tons} \le 15$	85 < W/ton ≤ 125	D	92 to 138 ft. of water
> 15 hp/100 tons	> 125 W/ton	F	> 138 ft. of water
Installed Pump Power	Power into Pump	GRADE	Available Pressure
	Motor		w/70% Eff. Pump at
			3 Lpm/kW
< $10.5 W_{\rm m}/kW_{\rm t}$	< 13 W _e /kW _t	Α	< 140 kPa
$10.5 < W_{\rm m}/kW_{\rm t} \le 16$	$13 < W_e/kW_t \le 19$	В	140 to 210 kPa
$16 < W_m/kW_t \le 21$	$19 < W_{e}/kW_{t} \le 25$	С	210 to 280 kPa
$21 < W_m/kW_t \le 32$	$25 < W_e/kW_t \le 36$	D	280 to 420 kPa
$> 32 W_m/kW_t$	$> 36 W_e/kW_t$	F	> 420 kPa
$W_m \equiv$ Watts Mechanic	cal, $W_e \equiv$ Watts Electr	rical, $kW_t \equiv$	Kilowatts Thermal

Ensuring High GSHP Efficiency with Minimal Head Loss and Smaller Pumps

How's it done? For unitary and residential systems: Use 1 in. (32 mm) U-tubes *and* 1.5 in. (40 mm) or 2 in. (50 mm) headers

Standard Unitary Practice

Two 385 W pumps on 5 ton unit EER = 61,600 Btu/h \div (4020 + 2 × 385 W) EER = 12.9 Btu/W h (COP = 3.8)

Smarter Unitary Practice

One 385 W pump on 5 ton Unit EER = 61,600 Btu/h ÷ (4020 + 385 W) EER = 14.0 Btu/W h (COP = 4.1)

Even Smarter Unitary Practice

One 245 W pump on 5 ton unit EER = 61,400 Btu/h ÷ (4020 + 245 W) EER = 14.3 Btu/W h (COP = 4.2)

Head Loss with ³/₄ in. (25 mm) U-Tubes and 1¹/₄ in. (40 mm) Headers

								Rated	Rated ∆h	Inlet	Inlet		Rated					
Liquid	20% Prop Glycol	→	Percer	nt by	Volume	Coils	Flow	Flow	@ 60°F	Size	Vel	Re(in)	Vel		Re(rated)			Δh
Temp	40	°F					gpm	gpm	ft. water	inches	fps		fps					Ft. Liquid
Den	64.0	lbm/ft3				Heat Pump	15	15	11.5	1	6.1	14130	6.1		41123			12.6
Vis	2.31E-03	lbm/ft-s	3.44	cps							0.0	0	0.0		0			0.0
							0	0	0	0	0.0	0	0.0		0			0.0
	HDPE Piping														Coil sub-tota	l		12.6
Flow	Nom. Dia.	DR	I.D.		Vel	Re	<u>∆h(ft)</u>	Length	Fittings	Leqv	Qty.	Fittings	Leqv	Qty.	Fittings	Leqv	Qty.	Δh
gpm	Inches	OD ÷ t	in.		fps		100 ft.	ft.		ft			ft			ft		Ft. Liquid
15	1.25	11	1.36		3.3	10404	4.65	150	Butt90	10	4	ButtRed	5	2	5-LoopHdrLas	30	2	12.1
3	0.75	11	0.86		1.7	3290	2.57	500	UniCoil	8	1	Butt90	5	2	ButtRed	4	2	13.5
	3	11	2.86		0.0	0	0.00	0	Butt90	26	2	ButtRed	10	2	Butt90	26	2	0.0
	2	11	1.94		0.0	0	0.00	0	Butt90	17	2	ButtRed	7	2	ButtRed	7	2	0.0
	2	11	1.94		0.0	0	0.00	0	Butt90	17	2	ButtRed	7	2	ButtRed	7	2	0.0
	1.25	11	1.36		0.0	0	0.00	0	Butt90	10	2	ButtRed	5	2	ButtRed	5	2	0.0
															HDPE sub-tot	al		25.6
						Other		Cv		Inlet	Inlet		Rated					
						Fittings	Flow	@ 60°F	Quanity	Size	Vel	Re(in)	Vel		Re(rated)			Δh
						& Valves	gpm	gpm		inches	fps		fps					Ft. Liquid
						ball valve	15	35	4	1	6.1	14130	14.3		95954			1.9
						1"x 3' host kil	15	16.4	2	1	6.1	14130	6.7		44961			4.3
						Y-strainer	15	28	1	1	6.1	14130	11.4		76763			0.7
															Fitting sub-to	tal		6.9
												Open Sys	Only		Elevation	Fe	et	0
															Total Loss	Ft. L	iquid	45.2

Reduce Head Loss with 1 in. (32 mm) U-Tubes, 1¹/₂ in. (50 mm) Headers, and 1¹/₄-in. Hose Kits and Valves

								Rated	Rated ∆h	Inlet	Inlet		Rated					
Liquid	20% Prop Glycol	→	Perce	nt by	Volume	Coils	Flow	Flow	@ 60°F	Size	Vel	Re(in)	Vel		Re(rated)			Δh
Temp	40	°F					gpm	gpm	ft. water	inches	fps		fps					Ft. Liquid
Den	64.0	lbm/ft3				Heat Pump	15	15	11.5	1	6.1	14130	6.1		41123			12.6
Vis	2.31E-03	lbm/ft-s	3.44	cps							0.0	0	0.0		0			0.0
							0	0	0	0	0.0	0	0.0		0			0.0
	HDPE Piping														Coil sub-total			12.6
Flow	Nom. Dia.	DR	I.D.		Vel	Re	<u>Δh(ft)</u>	Length	Fittings	Leqv	Qty.	Fittings	Leqv	Qty.	Fittings	Leqv	Qty.	Δh
gpm	Inches	OD ÷ t	in.		fps		100 ft.	ft.		ft			ft			ft		Ft. Liquid
15	1.5	11	1.55		2.5	9090	2.46	150	Butt90	12	4	ButtRed	6	2	5-LoopHdrLas	30	2	6.7
3	1	11	1.08		1.1	2627	0.74	500	UniCoil	10	1	Butt90	8	2	ButtRed	4	2	4.0
	3	11	2.86		0.0	0	0.00	0	Butt90	26	2	ButtRed	10	2	Butt90	26	2	0.0
	2	11	1.94		0.0	0	0.00	0	Butt90	17	2	ButtRed	7	2	ButtRed	7	2	0.0
	2	11	1.94		0.0	0	0.00	0	Butt90	17	2	ButtRed	7	2	ButtRed	7	2	0.0
	1.25	11	1.36		0.0	0	0.00	0	Butt90	10	2	ButtRed	5	2	ButtRed	5	2	0.0
															HDPE sub-tota	al		10.6
						Other		Cv		Inlet	Inlet		Rated					
						Fittings	Flow	@ 60°F	Quanity	Size	Vel	Re(in)	Vel		Re(rated)			Δh
						& Valves	gpm	gpm		inches	fps		fps					Ft. Liquid
						ball valve	15	47	4	1.25	3.9	11304	12.3		103082			1.1
						3' host kit	15	34.1	2	1.25	3.9	11304	8.9		74789			1.1
						Y-strainer	15	43	1	1.25	3.9	11304	11.2		94309			0.3
															Fitting sub-to	tal		2.5
												Open Sys	Only		Elevation	Fe	et	0
															Total Loss	Ft. Li	quid	25.8

Notes on U-Tube Size to Limit Head Loss

For HPDE with water

- 1. Limit ³/₄ in. DR 11 to 250 ft bores (500 ft of pipe)
- 2. Limit 1 in. DR 11 to 350 ft bores (700 ft of pipe)
- 3. Limit 1¹/₄ in. DR 11 (or DR 9) to 500 ft bores (1000 ft of pipe)*

For HPDE in heating-dominant buildings with water/antifreeze mixtures

- 1. Limit ³/₄ in. DR 11 to 200 ft bores (500 ft of pipe)
- 2. Limit 1 in. DR 11 to 300 ft bores (600 ft of pipe)
- 3. Limit 1¹/₄ in. DR 11 (or DR 9) to 450 ft bores (900 ft of pipe)*

For cross-linked polyethylene (PEX)

- 1. Caution advised because PEX inside diameters are based on copper tube size (CTS) and DR 9. Actual diameters are much smaller for the same nominal diameter for HDPE tubes which are based on larger iron pipe size (IPS) diameters.
- 2. Below-grade mechanical joints are to be avoided at all cost.
- * Consider DR 9 for bores greater than 400 ft

	On-Off Pu	mp KWh	Const. Pu	ump KWh	Var .Spd. Pump KWł			
%Full Load	Cooling	Heating	Cooling	Heating	Cooling	Heating		
0%	0	0	2660	2660	742	742		
10%	211	188	1496	1330	417	371		
20%	314	272	1114	964	311	269		
30%	331	281	781	665	218	185		
40%	300	263	532	465	148	130		
50%	270	223	382	316	123	102		
60%	211	183	249	216	105	91		
70%	148	131	150	133	80	71		
80%	131	113	116	100	79	67		
90%	105	84	83	66	70	56		
100%	70	47	50	33	51	34		
	2091	1784	7613	6948	2344	2119		
Totals	3875	\$465	14561	\$1,747	4463	\$536		

Not Oversized

50% Oversized (VS drives operate at minimum speed for many more hours)

Exterior Pipe: HDPE with Dimension Ratio (DR = OD/t) IP: OD = Schedule Pipe OD, ID = OD(1-2/DR) SI: OD (mm) = 25, 32, 40, 50, 63..., ID = OD(1-2/DR)

Interior Pipe: Steel, HDPE, and New Fiber-Core Polypropylene

Closed-Loop GSHP Water Loop Design

- 1. Layout piping network: lengths, fittings, and section flows
- 2. Size pipe for each section with acceptable head loss (<3 ft/100 ft)
- 3. Include full-size purge valves in convenient and safe locations
- 4. Find equivalent length of longest/critical path(s)
- 5. Find head loss through other components (most remote heat pump, hose kits, control valves, strainers, etc.)
- 6. Resize any pipe sections and components with high losses
- 7. Sum losses in critical flow path (do not include losses in parallel circuits)
- 8. Select pump and motor to operate within \pm 5% of pump best operating point (BEP)
- Calculate required pump power (hp/100 ton) or demand (W/ton or W/kW); redesign system if grade of A or B is not achieved (See Pump Power Grade Table—third slide this session)

Example Head Loss: Steps 1, 2, and 3

© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

92

Example Design: Spreadsheet Calculation HDPE Ground Loop and Building Loop

								Rated	Rated ∆h	Inlet	Inlet		Rated						
Liquid	Water					Coils	Flow	Flow	@ 60°F	Size	Vel	Re(in)	Vel		Re(rated)			Δh	
Temp	85	°F					apm	apm	ft. water	inches	fps		fps					Ft. Liquid	
Den	62.14	lbm/ft3				Heat Pump	8	8	10	1	3.3	31093	3.3		21932			9.7	
Vis	5.44E-04	lbm/ft-s	0.81	CDS							0.0	0	0.0		0			0.0	
							0	0	0	0	0.0	0	0.0		0			0.0	
	HDPE Pipi	na - Grou	nd Loop (9	U-tubes)			-	-				-			Coil sub-total			9.7	
Flow	Nom. Dia.	DR	I.D.	Roughness	Vel	Re	Δh(ft)	Length	Fittina Selecto	Leav	Qtv.	Fitting Selector	Leav	Qtv.	Fitting Selector	Leav	Qtv.	Δh	
apm	Inches	OD ÷ t	in.	for HDPE in ft.	fps		100 ft.	ft.	g	ft	<i>j</i> -	g	ft			ft		Ft. Liquid	
30.0	2	11	1.94	7.0E-05	3.2	60004	2.20	130	Butt90	17	2	ButtRed	7	C	5-LoopHdrLast	30	0	3.6	Supply Header
26.7	2	11	1.94	7.0E-05	2.9	53337	1.77	20	ButtTeeRun	4	1	ButtTeeRun	4	0	ButtRed	7	0	0.4	After 1st U-tube take off
23.3	2	11	1.94	7.0E-05	2.5	46670	1.39	20	ButtTeeRun	4	1	ButtRed	7	0	5-LoopHdrLast	30	0	0.3	After 2nd U-tube take off
20.0	2	11	1.94	7.0E-05	2.2	40003	1.05	20	ButtTeeRun	4	1	ButtRed	7	1	5-LoopHdrLast	30	0	0.3	After 3rd U-tube take off
16.7	1.5	11	1.55	7.0E-05	2.8	41669	2.24	20	ButtTeeRun	3	1	ButtRed	6	C	5-LoopHdrLast	30	0	0.5	After 4th U-tube take off
13.3	1.25	11	1.36	7.0E-05	3.0	38155	2.88	20	ButtTeeRun	3	1	ButtRed	5	1	5-LoopHdrLast	30	0	0.8	After 5th U-tube take off
10.0	1.25	11	1.36	7.0E-05	2.2	28616	1.71	80	ButtTeeRun	3	1	ButtRed	5	C	5-LoopHdrLast	30	0	1.4	After 6th U-tube take off
6.7	1	11	1.08	7.0E-05	2.4	24083	2.56	20	ButtTeeRun	3	1	ButtRed	4	0	5-LoopHdrLast	30	0	0.6	After 7th U-tube take off
3.3	1	11	1.08	7.0E-05	12	12041	0.74	565	UniCoil	10	1	ButtRed	4	0	5-LoopHdrLast	30	0	4.3	U-tube
30.0	2	11	1.94	7.0E-05	3.2	60004	2 20	110	Butt90	17	2	ButtRed	7	0	5-LoopHdrLast	30	0	3.2	Return Header
00.0			1.01	1.02 00	0.2	00001			Dattoo		-	Dutil tou	· ·		Grn Loon sub	-total	Ū	15.5	
	НОРЕ	Pining -	Building L	000			` U	-tude	ке							lotai		1010	
30.0	2	11	1 94		32	60004	2 20	5	ButtTeeBr	16	2	ButtRed	7		5-LoopHdrl ast	30	0	0.8	
60.0	3	11	2.86	0.00007	3.0	81434	1 17	25	ButtTeeBr	26	2	ButtRed	10		5-LoopHdrLast	30	0	0.0	
30.0	2	11	1 94	0.00007	3.2	60004	2 20	136	ButtTeeBr	16	4	ButtRed	7		5-LoopHdrLast	30	0	44	
00.0	1 25	11	1.01	0.00007	0.0	00001	0.00	0	Butt90	10	2	ButtRed	5		5-LoopHdrLast	30	0	0.0	
	1.20	11	1.00	0.00007	0.0	0	0.00	0	Butt90	10	2	ButtRed	5		5-LoopHdrLast	30	2	0.0	
	1.20	11	1.00	0.00007	0.0	0	0.00	0	Butt90	10	2	ButtRed	5		5-LoopHdrLast	30		0.0	
	1.20		1.00	0.00007	0.0	•	0.00	Ű	Balloo	10	-	Butti tou			HDPE sub-tot	al 00		6.0	
	Steel/Brass/P		s and Fitt	inas												a1		0.1	
Flow	Nom Dia	Schedule		Pipe Mat'l	Vel	Re	Δh(ft)	Length	Fitting Selecto	Leav	Otv	Fitting Selector	Leav	Otv	Fitting Selector	Leav	Otv	Λh	
dom	Inches	40 or 80	in	r Rohness in f	fos	110	100 ft	ft		ft	Qty.	Rung Colocio	ft	Q.y.		ff	Qty.	Et Liquid	
60 0	3	40	3 07	Steel-Old	2.6	76009	1 10	0	Gate Valve	83	2	Gate Valve	83	0	Gate Valve	8.3	0	0.2	
00.0	3	40	3.07	Steel-Old	0.0	0	0.00	0	Gate Valve	8.3	0	T-Straight	10.0	0	Gate Valve	8.3	0	0.0	
	3	40	3.07	Steel-Old	0.0	0	0.00	0	Gate Valve	8.3	0	T-Straight	10.0		Gate Valve	8.3	0	0.0	
		10	0.01		0.0	Other	0.00	Cv		Inlet	Inlet	1 Otraight	Ratec			0.0		0.0	
						Fittings	Flow	00⁰F	Quanity	Size	Vel	Re(in)	Vel		Re(rated)			Λh	
						& Valves	apm	anm	Quanty	inches	fns	100(11)	fns		rio(ratod)			Et Liquid	
						hose kit	8	8.2	2	0 75	5.8	41457	6.0		29974			4.3	
						hall valves	8	23.5	2	0.75	5.8	41457	17 1		85901			0.5	
						zone valve	8	25	1	0.75	5.8	41457	18.2		91384			0.0	
						Strainer	60	160	1	3	27	77732	7.3		146215			0.2	
						Swing Ck	60	195	1	3	27	77732	8.9		178200			0.0	
						Smily OK	00	100			2.1	11102	0.0		Fitting sub-to	tal		5.7	
												Open System	Only		Flevation			0.7	Feet
												open cystem.	Siny		Total Loss			37.0	Ft Liquid
																		57.0	
																			93

Select Pump(s)

94

Calculate Pump Power and/or Demand Grade

$W_{Pump}(hp)$	1.0 hp	$-4.8 - \frac{hp}{(10.2 W / kW)} = Grad$	ΙοΛ
100 <i>tons</i>	$-\frac{1}{21 \text{ tons}/100}$	$-4.0 \frac{100 \text{ tons}}{100 \text{ tons}} (10.2 \text{ W}_m/\text{KW}_t) = 0.000$	ел

Output	Full-Load	Efficiency	Part-Loa	d Multipli	ers (η _{PL} = Pl	LM × η _{FL})					
Power	~1800 rpm	~3600 rpm	Percent of Full Load								
(hp)	(4-Pole)	(2-Pole)	20%	40%	60%	80%					
1	82.5%	74.0%	0.59	0.82	0.90	0.96					
1.5	84.0%	81.5%									
2	84.0%	82.5%	0.66	0.93	1.00	1.00					
3	87.5%	84.0%									
5	87.5%	86.5%									
7.5	90.2%	87.5%	0.80	0.96	1.00	1.00					
10	90.2%	88.5%									
15	91.0%	89.5%									
20	91.7%	89.5%	0.87	0.98	1.00	1.00					
25	92.4%	90.2%									
30	92.4%	90.2%									
40	93.0%	91.0%	0.92	0.99	1.00	1.00					
50	93.6%	91.7%									

$$W_{Motor}(kW_e) = \frac{0.746 \frac{kW}{hp} \times W_{Pump}(hp)}{\eta_{Motor} \times \eta_{VSD}}$$
$$= \frac{0.746 \frac{kW}{hp} \times 1.0hp}{82.5\% \times 97\%} = 0.93 \, kW$$
$$\frac{W_{motor}(W)}{ton} = \frac{0.93kW \times 1000W/kW}{21 \, tons}$$
$$= 44 \frac{W}{ton} (12.6 \, W_e/kW_t) \equiv Grade \, A$$

Unitary Loop Pump Control and Connections

Common Loop Pump Control and Connections

One-Pipe Loop Pump Control and Connections

Central Loop Pump Control and Connections

Naturally Balanced, Small Parallel U-Tube Circuits

To avoid kinking **Equivalent length of branch tees** d / 3 U-tube nearly equal to added straight run Circuit of most distant U-tube. Thus, flow \geq 25×d rates for all U-tubes the same. 4 U-tube Circuit 100

Naturally Balanced, Modified Reverse-Return U-Tube Circuits

Vault or Equipment Room Manifold

© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

102

Close Header U-Tube Circuits

Suggested for Installations Below Pavement Since U-Tube Connections Can Be Made in Compact, Easy to Locate Area

Out of balance? Not much if U-tube bores are deep. Care required in labeling each U-tube to ensure supply and return header connections are correct.

Buried Valve Vault—Twenty Circuits

Purge Pumps for 10 to 25 Ton (35 to 90 kW) Ground Loop Circuits

Purge requirement being debated: Original specification: 2 fps but poorly designed circuits may need up to 6 fps

Monster Purge Pump Used for Ground Loop Circuits without Isolation Valves

Debris Removed by Monster Purge Pump after Initial Purging Attempt of 300 Ton (1050 kW) Ground Loop with an Insufficient Number of Isolation Valves

107

Recommendations for Ground Loop Circuit Options

- Consult with reputable ground loop contractors to ascertain level of difficulty for options
- Request bids for alternate ground loop circuit options
- Avoid input from supply vendors unless they are willing to provide written prices for component options
- Verify local safety precautions required for burial depths greater than 4 ft (1.2 m) below grade
- For vaults, verify with local authorities for classification of and requirements for confined spaces
Questions?

Comments?

Session 5 GSHP PERFORMANCE AND INSTALLATION COST

CBECS 2012 Compared to 2003

 Overall building energy intensity decreased from 89.8 to 80 kBtu/ft²

• Total lighting energy (kBtu) down 46% and Heating down 20%

• Total ventilation energy and cooling energy increased substantially

• 2008–12 buildings used more energy than those built in 1980-2007

Commercial Building Energy Consumption Survey -2012

http://www.eia.gov/consumption/commercial/reports/2012/energyusage/index.cfm.

GSHP System Energy Consumption and ENERGY STAR Rating

ENERGY STAR Rating and GCHP Loop Type

Ground Loop Performance—Nice Cooling Mode Loop Temperatures in Warm Ground after 11 Years of Operation

Ground Loop Performance—Hot Cooling Mode Temperatures for Short Loop GCHP after Nine Years of Operation

Ground Loop Performance—Nice Heating Mode Temperatures in Cold Climate

Ground Loop Performance—Cooling Mode Temperatures and VSD Speed

NW Georgia Elem. School: Energy Star Rating = 83 Outdoor Air High Temperature = 93°F (34°C) L_{bore} = 214 ft/ton (54 W/m), t_{grn} = 60°F (16°C)

Why is the Ground Loop in the LEED Platinum Building Heating up in the Middle of the Winter?

Why is the Ground Loop in the LEED Platinum Building Heating up in the Middle of the Winter? (*cont.*)

- The combination of fan heat and internal loads are heating the building in the early morning
- The combination of fan heat and internal loads are overheating the building during the remaining occupied period
- In the afternoon, the heat pumps switch into net cooling to offset the fan heat and internal load
- The chilled-water pumps are also adding heat to the loop (which normally would be a good thing in the winter)

Predicting Performance of LEED Platinum GSHP Building with System Efficiency

Item			Enter Chiller D	Chiller Data			Enter AC/HP Data						
1	Chillers or Heat Pumps	Qty.	kW/ton	Tons			Qty.	EER	kBtu/h	kW-ea.	kW-tot.	kBtu/h	tons
							6	14	345	24.6	147.9	2070.0	172.5
										0.0	0.0	0.0	0.0
										0.0	0.0	0.0	0.0
2a	Air Handling Unit Fans		Air Flow-cfm	TP-in w	tr	η fan	η mtr.	η VSD	bhp-each				
		3	17000		4	71.0%	92.0%	97.0%	15.08	12.61	37.8	-129.1	-10.8
		1	2600		4	64.0%	85.0%	97.0%	2.56	2.32	2.3	-7.9	-0.7
		1	6500		4	62.0%	88.0%	97.0%	6.60	5.77	5.8	-19.7	-1.6
2b	Fan coil or VAV Fans		Air Flow-cfm	TP-in w	tr	η fan	hp-ea.	η mtr. (%)					
	Enter Air Flow, TP, and								0.00	0.00	0.0	0.0	0.0
	ηfan or fan hp.								0.00	0.00	0.0	0.0	0.0
									0.00	0.00	0.0	0.0	0.0
3	Return Air Fans		Air Flow-cfm	TP-in w	tr	η fan	η mtr.	η VSD (%)					
		3	17000		2	65.0%	92.0%	97.0%	8.24	6.89	20.7	-70.5	-5.9
		1	2600	0.	75	50.0%	80.0%	97.0%	0.61	0.59	0.6	-2.0	-0.2
									0.00	0.00	0.0	0.0	0.0
4	Chilled Water Pumps		Wtr. Flow-gpm	∆H-ft w	tr	η pump	η mtr.	η VSD (%)					
		6	86		46	64.0%	86.0%	97.0%	1.56	1.40	8.4	-28.6	-2.4
		1	135		38	68.0%	86.0%	97.0%	1.91	1.70	1.7	-5.8	-0.5
		1	150		46	64.0%	88.0%	97.0%	2.72	2.38	2.4	-8.1	-0.7
5	Condenser Water Pumps		Wtr. Flow-gpm	∆H-ft w	tr	η pump	η mtr.	η VSD (%)				Click I	Here
	(Ground Loop For GSHPs)	1	540		92	80.0%	91.0%	97.0%	15.68	13.25	13.3		
									0.00	0.00	0.0		
									0.00	0.00	0.0		
6	Cond./Cooling Tower Fan	0	Air Flow (cfm)	TP (in. w	rtr)	η fan (%)	η mtr.	η VSD	hp-each				
		0					75.0%	100.0%		0.00	0.0		
										0.00	0.0		
										0.00	0.0		
											kW	kBtu/h	tons
									System	Totals	240.7	1798	150
				kW/ton	=	1.61	EER =	7.5	Btu/W-h	COP =	2.19		

Predicting Performance via System Efficiency Common Loop System (One of Eight)

Item			Enter Chiller Data		OR	Enter AC/HP Data						
1	Chillers or Heat Pumps	Qty.	kW/ton	Tons		Qty.	EER	kBtu/h	kW-ea.	kW-tot.	kBtu/h	tons
	Clg 75 EAT & 86 EWT					3	15.1	26.2	1.7	5.2	78.6	6.6
	ESP+∆h(filter)=0.8" wg					2	15.3	32	2.1	4.2	64.0	5.3
						3	15.1	37.7	2.5	7.5	113.1	9.4
									0.0	0.0	0.0	0.0
2a	Air Handling Unit Fans		Air Flow-cfm	TP-in wtr	η fan	η mtr.	η VSD	bhp-each				
								0.00	0.00	0.0	0.0	0.0
								0.00	0.00	0.0	0.0	0.0
								0.00	0.00	0.0	0.0	0.0
2b	Fan coil or VAV Fans	\succ	Air Flow-cfm	TP-in wtr	η fan	hp-ea.	η mtr. (%)	bhp-each				
	Enter Air Flow, TP, and							0.00	0.00	0.0	0.0	0.0
	ηfan or fan hp.							0.00	0.00	0.0	0.0	0.0
								0.00	0.00	0.0	0.0	0.0
3	Return Air Fans	\succ	Air Flow-cfm	TP-in wtr	η fan	η mtr.	η VSD (%)	bhp-each				
								0.00	0.00	0.0	0.0	0.0
								0.00	0.00	0.0	0.0	0.0
								0.00	0.00	0.0	0.0	0.0
4	Chilled Water Pumps	\succ	Wtr. Flow-gpm	∆H-ft wtr	η pump	η mtr.	η VSD (%)	bhp-each				
								0.00	0.00	0.0	0.0	0.0
								0.00	0.00	0.0	0.0	0.0
								0.00	0.00	0.0	0.0	0.0
5	Condenser Water Pumps	\sim	Wtr. Flow-gpm	∆H-ft wtr	n pump	η mtr.	η VSD (%)	bhp-each			Click	Here
	(Ground Loop For GSHPs)	3	8	28	45.0%	50.0%	100.0%	0.13	0.19	0.6		
		2	9	27	45.0%	50.0%	100.0%	0.14	0.20	0.4		
		3	11	25	45.0%	50.0%	100.0%	0.15	0.23	0.7		
6	Cond./Cooling Tower Fan	0	Air Flow (cfm)	TP (in. wtr)	n fan (%)	n mtr.	η VSD	hp-each				
		0							0.00	0.0		
			High Syste	em EER ev	en				0.00	0.0		
			with low e	fficiency					0.00	0.0		
			circulator	pumps						kW	kBtu/h	tons
								System	Totals	18.5	256	21
				kW/ton =	0.87	EER =	13.8	Btu/W-h	COP =	4.04		

GSHP* Cost (\$/ft²) Previous and Recent Surveys

GSHP Costs: 1995 to 2011

- The average ground heat exchanger cost in the recent survey was 26% of total GSHP cost and increased by 50% (3% per year) since 1995
- The average HVAC cost in the recent survey was 74% of the total GSHP system cost and increased by 177% (11% per year) since 1995
- Using logic (an important tool for engineering), cost optimization should include, and possibly concentrate, on the HVAC component of GSHPs

Example in GSHP Book: GSHP Equipment Cost Chilled-Water VAV Versus Common Loop Heat Pumps

Qty		Unit Cost	Total Cost		
30	3-ton (11 kW) Heat pump	\$3,350	\$100,500		
40	4-ton (14 kW) Heat pump*	\$4,050	\$162,000		
30	5-ton (18 kW) Heat pump	\$4,750	\$142,500		
100	1/6 hp (0.12 kW) In-line Circulator Pumps	\$990	\$99,000		
	*Interpolated values	Total	\$504,000		
		Cost/ton	\$1,260		
		Cost/kW	\$360		
Option 2 - Chilled Water VAV GSHP - Two 200-ton (700 kW) Chillers - Cent					
Otv	Components	Unit Cost	Total Cost		
2	200 ton (700 kW) WC Screw Chillers	\$111,000	\$222,000		
8	20,000 cfm (34,000 cmh) VAV AHUs	\$116,700	\$933,600		
40	800 cfm (1,360 cmh) FPVAV Terminals**	\$5,975	\$239,000		
40	1200 cfm (2,040 cmh) FPVAV Terminals**	\$7,400	\$296,000		
40	2000 cfm (3,400 cmh) FPVAV Terminals**	\$11,825	\$473,000		
2	20 hp (15 kW) Base Mounted Pumps	\$20,200	\$40,400		
3	10 hp (7.5 kW) Base Mounted Pumps	\$16,800	\$50,400		
	**Deducts for no zone duct included	Total	\$2,254,400		
		Cost/ton	\$5,636		
		Cost/kW	\$1,610		

Vault or No Vault 400 ton (1400 kW) GCHP system with ten circuits

Qty.	Option 1 - Vault with Manifold and Valves	Unit Cost	Total Cost
1	HDPE Vault w. valves - 8" (200 mm) mains 10 -3" (80 mm) cicuits	\$35,000.00	\$35,000
410	8" (200 mm) HDPE DR 11 Pipe	\$15.30	\$6,273
2	8" (200 mm) 90° Elbows	\$268.00	\$536
2	8" (200 mm) Flanges	\$63.00	\$126
2	8" (200 mm) Pipe sleeves	\$525.00	\$1,050
20	3" (80 mm) Butt fusion welds	\$23.50	\$470
16	8" (200 mm) Butt fusion welds	\$61.00	\$976
			\$44,431
		Cost per ton	\$111.08
		Cost per kW	\$31.74
054	Option 2. Top circuits to aquipment room manifold and Valves	Lipit Cost	Total Cost
4100	2" (20 mm) UDDE DD 11 Ding		
4100	3 (80 mm) HDPE DR 11 Pipe	\$2.21 615-20	\$9,001 \$9,001
20	8 (200 mm) HDPE DR 11 PIPE	\$15.30	\$306 ¢000
40	3" (80 mm) Flanges	\$22.50	\$900
20	3" (80 mm) Pipe sleeves	\$238.00	\$4,760
20	3" (80 mm) Pipe saddle fitting to 8" (200 mm) main	\$39.00	Ş780
160	3" (80 mm) Butt fusion welds	\$23.50	\$3,760
20	3" (80 mm) Saddle fusion welds	\$70.00	\$1,400
4	8" (200 mm) Butt fusion welds	\$30.50	\$122
2	4" (100 mm) Butt fusion welds	\$23.50	\$47
1	Valve set - 2-8" BFV, 20-3" (80 mm) CBV, 2-4" (100) BFV (purge)	\$6,000.00	\$6,000
2	8" (200 mm) Flanges	\$63.00	\$126
2	8" (200 mm) x 4" (100) Reducers	\$109.00	\$218
2	4" (100 mm) Flanges	\$30.50	\$61
			\$27,541
		Cost per ton	\$68.85
		Cost per kW	\$19.67

GCHP @ \$15/ft Bore Compared to Chilled-Water Systems in Alabama School*

© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

Lower Hanging Fruit to Optimizing GSHP System Costs? Equipment and Controls*

R.S. Means 2014 Mechanical Cost Data - Controls	Bare Cost	With O&P		
Sensors and Transducers	\$ per \$	Sensor		
Duct temperature sensor (with 50 ft. run in EMT)	\$360	\$395		
Space temperature sensor (with 50 ft. run in EMT)	\$575	\$635		
Duct humidity sensor (with 50 ft. run in EMT)	\$605	\$665		
Space humidity sensor (with 50 ft. run in EMT)	\$925	\$1,025		
Duct static pressure sensor (with 50 ft. run in EMT)	\$490	\$540		
Air Flow (cfm) transducer (with 50 ft. run in EMT)	\$660	\$730		
Water temperature sensor (with 50 ft. run in EMT, not including pipe tap)	\$360	\$395		
Water Flow transducer (with 50 ft. run in EMT, not including pipe tap)	\$2,075	\$2,300		
Water differential sensor (with 50 ft. run in EMT, not including pipe tap)	\$850	\$935		
Power (kW) transducer (with 50 ft. run in EMT)	\$1,175	\$1,300		
Energy (kWh) totalizer (with 50 ft. run in EMT, not including pulse transmitter)	\$545	\$600		
Space static pressure sensor (with 50 ft. run in EMT)	\$925	\$1,025		
Controllers	\$ per Co	\$ per Controller		
Multiplexer panel with function boards - 48 point	\$4,575	\$5,050		
Multiplexer panel with function boards - 128 point	\$6,300	\$6,925		
DDC Controller - 16 point in mechanical room	\$1,925	\$3,125		
DDC Controller - 32 point in mechanical room	\$4,725	\$5,200		
VAV terminal box controller with space temperature sensor	\$735	\$805		
Front End Costs				
Computer with software program (cost vary with complexity)	\$5,675	\$6,250		
Color graphics software (cost vary with complexity)	\$3,400	\$3,750		
Color graphics slides (cost vary with complexity)	\$426	\$470		
Engineering, calibration, and start-up labor (per sensor)	\$292/sensor	\$320/sensor		
Basic maintenance manager software (cost vary with complexity)	\$1,700	\$1,875		

© 2020 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

Factors of Influence—Method of Indoor Temperature Control

GSHP Cost Versus Performance

- Open access to cost information, both HVAC components and ground loops, is critical
- Currently, this information is limited and usually not reported, but this can change with cooperation
- ASHRAE Standard 90.1-2013 compliance is a poor predictor/indicator of *system* efficiency
- ENERGY STAR rating is a better indicator of *system* performance (for building types covered)
- System efficiency is a simple and probably better predictor of energy consumption
- Quality engineering practice can often reduce both installation and operating cost via **KISS**

Questions?

Comments?

Evaluation and Certificate

ASHRAE values your comments about this course. You will receive your Certificate of Attendance when you finish the online course evaluation form at this URL: www.ashrae.org/montreal2020oct28

- □ Be sure to add your appropriate license numbers.
- If you have any questions about ASHRAE Certificates, please contact Kelly Arnold, Professional Development Coordinator at karnold@ashrae.org.
- If you have any questions about ASHRAE courses, please contact Tiffany Cox, Course Administrator at tcox@ashrae.org.

Explore ASHRAE Learning Institute Courses

https://www.ashrae.org/instructor-led-courses

Find a Topic that Fits You:

- Commissioning
- Energy Efficiency
- Environmental Quality
- > HVAC&R Applications
- Standards and Guidelines

See all the ways to learn and grow with ASHRAE at:

https://www.ashrae.org/professional-development/learning-portal

ASHRAE Certification

- □ More than 3,000 certifications earned to-date
- Elevate your reputation among peers, in the workplace and among clients
- □ NEW! Digital Badging

> Embedded metadata uniquely linked to you

- > Shareable in electronic media, including LinkedIn and email
- > Instant recognition, with real-time, third-part verification

Visit www.ashrae.org/certification to learn more.