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ABSTRACT 

This paper develops a framework for buildings-to-

distribution network (BtDN) integration. BtDN couples 

buildings, photovoltaic (PV) generation, and battery 

energy storage systems (BESS) to the power distribution 

network, using model predictive control to solve a joint 

optimization problem which minimizes building energy 

use while implementing reactive power control of PV 

and BESS inverters to maintain nodal voltage within 

prescribed limits at all times. The framework is tested in 

a pilot simulation study and improves upon a naïve 

control algorithm, showing 24% reduction in building 

energy usage, 40% reduction in network losses, and a 

complete elimination of voltage deviation. 

INTRODUCTION 

In the United States, buildings account for more than 

70% of electricity use (DOE 2011). Within the building 

sector, heating, ventilation, and air conditioning 

(HVAC) accounts for approximately 50% of total 

building energy consumption. If the thermal energy 

storage capacity of buildings is properly managed, 

buildings can provide an enormous amount of demand 

response services to the distribution network in addition 

to reducing their energy usage and associated costs (Liu 

et al. 2018). 

Due to the smart grid initiative, a large number of 

buildings equipped with photovoltaic devices (PVs) and 

battery energy storage systems (BESS) are connected to 

distribution networks. The increasing penetration of such 

distributed energy resources (DERs) and electric 

vehicles in distribution networks causes frequent and 

sizable voltage fluctuations. Maintaining voltages close 

to their nominal values as set by the ANSI C84.1 

standard (ANSI 2016) is, therefore, a challenge in 

distribution networks. Thus more ancillary services are 

required in networks to maintain nodal voltages close to 

their nominal value (Smith et al. 2011). Also, due to the 

uncertain and intermittent nature of DERs, the traditional 

slow-responding voltage devices like auto transformers, 

tap-changers, and shunt capacitors need to work harder 

to regulate voltages (Farivar et al. 2011).  Hence the 

combined optimization of distribution networks and 

smart buildings has been emphasized by the U.S. 

Department of Energy in order to understand and take 

advantage of the multiple benefits and opportunities that 

such integration has to offer (DOE 2014). 

There is a substantial body of work concerned with the 

optimization of distribution networks in conjunction 

with smart buildings. Many of these studies use a 

demand response scheme to implement building actions 

that also benefit the grid. For example, (Wei et al. 2016) 

develops a proactive building demand response scheme 

that integrates the actions of smart building HVAC 

systems with the scheduling of the distribution network 

so that buildings become a proactive participant in the 

demand response event rather than reacting to grid 

signals. This scheme achieved 10% reduction in 

generation costs and 20% reduction in building operation 

costs compared to a passive demand response scheme. 

Razmara et al. (2018) use a bidirectional optimization 

and control framework that exploits the flexibility of 

HVAC systems, PV generators, and BESS to provide 

demand response services to the grid in order to reduce 

load ramp-rates. The bidirectional control framework 

resulted in up to 26% reduction in monthly building 

electricity costs and 30% ramp-rate reduction, with 

probabilistic analyses showing similarly favorable 

results. In (Olama et al. 2018), buildings’ load flexibility 

is exploited to provide frequency regulation services to 

the distribution network. Liu et al. (2019) develop a 

transactive distributed energy management system for 

community microgrids which schedules DERs and 

BESSs through iterative communication between the 

distribution network and individual buildings. This 

interaction enabled the controller to take actions that 

reduced voltage deviations by 2% and network losses by 

9% even as building operating costs were reduced by up 

to 16% in a simulation study.  
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Recently there have been several studies that develop 

frameworks for full coupling of buildings and grid, in 

which buildings and the power grid are jointly 

optimized. (Taha et al. 2019) develops an integrated 

mathematical framework that explicitly couples 

commercial building dynamics to the dynamics of the 

power transmission network, using model predictive 

control (MPC) to simultaneously optimize building 

energy usage and grid frequency deviation. This 

building-to-grid framework achieved up to 43% total 

operational cost reduction, 17% HVAC consumption 

reduction, and up to 75% grid operational cost reduction 

in simulated case studies. (Liu et al. 2017) presents a 

mixed integer conic program that integrates building 

thermal dynamics into a network optimal power flow 

problem, optimizing operating costs, voltage deviation, 

network losses, and power factor at the point of common 

coupling. This framework achieved up to 16% 

operational cost reduction compared to autonomous 

control and up to 25% reduction in network losses. Jiang 

et al. (2018) develop an optimal scheduling method for 

smart building HVAC systems and on-load tap changer 

to optimize building energy costs and network losses and 

voltage deviations. In simulation studies, the proposed 

scheduling method resulted in up to 7% network loss 

reduction and 1% voltage deviation reduction under high 

building penetration and up to 5% network loss reduction 

under low building penetration, compared to 

conventional scheduling methods. Mirakhorli and Dong 

(2018) introduce a novel load aggregation method for a 

residential building-to-grid integrated system and use 

MPC to control residential loads in order to reduce the 

network’s generation cost, peak load, and voltage drop. 

Case studies demonstrated a 21% reduction in generation 

cost, 17% reduction in peak load, and 22% reduction in 

building operational cost. The authors of (Badings et al. 

2019) present a centralized MPC framework to model 

explicitly the hierarchical interactions between the 

transmission system operator, distribution system 

operator, and building energy storage units, as an 

extension of the work presented in (Taha et al. 2019). 

Using this framework, building-side storage flexibility 

was exploited to reduce grid frequency deviations by up 

to 50% overall and 64% for the distribution system 

operator alone. 

Several of the works referenced above consider voltage 

regulation of distribution networks, either through 

control of DERs’ active power or grid-level devices such 

as tap-changers and shunt capacitors. However, very few 

consider the flexibility of the PV and BESS inverters and 

the subsequent opportunity for reactive power support 

for voltage control. In particular, (Liu et al. 2017) and 

(Liu et al. 2019) considers reactive power support from 

BESS and distributed generators (other than PV) only. 

Recent amendments of the IEEE 1547-2018 Standard 

(IEEE 2018) have allowed PV inverters to operate at 

non-unity power factor to provide reactive power 

support for voltage regulation in distribution networks; 

the benefits of PV inverter reactive power support are 

described in (Turitsyn et al. 2011). Therefore, it is 

important to understand the flexibility of PV inverters 

and BESS to provide reactive power support services for 

voltage regulation in a building-to-distribution network 

(BtDN) setup. Since these “smart” inverters can be 

operated at fast time-scales (less than 1 second), the 

lifetime of the conventional, slower-responding voltage 

regulation assets can be extended. Furthermore, enabling 

reactive power control of smart PV inverters can help to 

mitigate so-called “duck curve” issues caused by high 

penetration of renewable energy resources (Torabi et al. 

2018). 

In an effort to address the gaps in the relevant research, 

this paper proposes a framework to optimize building 

energy consumption, thermal set-point deviations, and 

network losses in a BtDN setup using MPC. Particularly, 

the objective of this paper is to investigate the benefits of 

reactive power support by PV and BESS inverters for 

nodal voltage regulation in a fully coupled BtDN 

integrated scheme. The framework proposed in this 

paper is fully flexible. Specifically, residential and 

commercial buildings as well as PV and BESS can be 

incorporated; in addition, the percentage of buildings 

which are equipped with DERs can be varied between 

zero and one hundred. 

The rest of the paper is structured as follows. First, we 

present the mathematical models of building thermal 

dynamics, BESS and PV inverters, and the distribution 

network, and we describe their integration. Next, we 

formulate the joint optimization problem and detail the 

MPC algorithm that will be implemented in its solution. 

Then we present the results of a pilot simulation study 

and discuss their implications. We conclude the paper by 

discussing the study’s limitations and outlining future 

research directions. 

MATHEMATICAL MODELLING 

In this section we develop mathematical models for 

buildings, PV inverters, battery energy storage systems, 

and the distribution network. 

Building dynamics 

A typical three-resistance and two-capacitance reduced-

order thermal model, such as the one shown in Figure 1 

(Taha et al. 2019), is considered for both the residential 

and commercial buildings in this integration framework. 

Typically, model parameters are tuned using an 

EnergyPlus building simulation model (DOE 2019); in 

this study, mean parameters were obtained from (Taha et 
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al. 2019) and (Lin et al. 2012) and validated using 

EnergyPlus. The mean parameters were then sampled to 

generate more buildings.  

The dynamics of a building with temperature states Twall

and Tzone can be written in state space representation:

𝐱̇b,l(t) = 𝐀b,l𝐱b,l(t) + 𝐁ub,l𝐮b,l(t) + 𝐁wb,l𝐰b,l(t) (1)

where 

● 𝐱b,l(t) = [Twall(t), Tzone(t) ]l
T is the state

vector of building l at time t;
● ub,l(t) = phvac,l(t) is the control input

(specifically, power delivered to the HVAC

system) associated with building l at time t;

● 𝐰b,l(t) = [Tamb(t), Q̇sol(t), Q̇int(t)]
l

T
 is the

disturbance vector of building l at time t, which 

includes ambient temperature, building heat 

gains due to solar radiation, and internal heat 

gains due to occupants, lights, and equipment; 

● 𝐀b,l, 𝐁ub,l, and 𝐁wb,l are the system, input, and

disturbance matrices associated with building l;
these are time-invariant and depend on the

physical characteristics of the individual

building.

Figure 1 Reduced order building thermal model 

The system represented in equation (1) can be converted 

to a discrete time system with appropriate sampling time 

Tsb
 (60 sec); the discrete time dynamics are given by

𝐱b,l(t + 1) = 𝐀̃b,lxb,l(t) + 𝐁̃ub,lub,l(t)

+𝐁̃wb,l𝐰b,l(t) (2) 

where 

● 𝐀̃b,l = (𝐈2 − Tsb
𝐀b,l)

−1
, with 𝐈2 being the

identity matrix of dimension 2;

● 𝐁̃ub,l = Tsb
𝐀̃b,l𝐁ub,l

● 𝐁̃wb,l = Tsb
𝐀̃b,l𝐁ub,l

The building states and inputs are constrained by upper 

and lower limits: 

𝐱b,l
min ≤ 𝐱b,l(t) ≤ 𝐱b,l

max (3) 

ub,l
min ≤ ub,l(t) ≤ ub,l

max (4) 

Battery energy storage system 

The battery energy storage system associated with 

building l is modeled linearly according to its state of 

charge (SOC) as follows: 

xbat,l(t + 1) = xbat,l(t) + kgpbat,l(t) (5) 

where 

● xbat,l(t) is the SOC of battery l at time-step t;

● pbat,l(t) is the active power drawn by the

battery (pbat,l(t) > 0 denotes charging and

pbat,l(t) < 0 denotes discharging);

● kg is the duration of the time-step (it is

convenient to choose kg equal to Tsb
.

In addition to active power, the battery is capable of 

charging and discharging reactive power. The active and 

reactive power charged or discharged by the battery is 

constrained at each time-step t by the following: 

pbat,l
2 (t) + qbat,l

2 (t) ≤ (sbat,l
max)

2
(6) 

where 

● qbat,l(t) is the reactive power drawn by the

battery, which follows the same

charging/discharging convention as pbat,l(t);

● sbat,l
max is the maximum apparent power rating of

the battery inverter (this is a device operational

specification).

The battery’s operation is further constrained by limits 

on its charging/discharging power and SOC. Constraint 

(7) prolongs the life of the battery by preventing deep

charge and discharge.

xbat,l
min ≤ xbat,l(t) ≤ xbat,l

max (7) 

pbat,l
min ≤ pbat,l(t) ≤ pbat,l

max (8) 

PV inverter 

Consider a PV inverter connected to building l with 

active power generation ppv,l(t) which also has the

capability to provide reactive power qpv,l(t), respecting

its maximum apparent power rating spv,l
max, by curtailing

the active power generation by ratio αpv,l(t). The

reactive power of this PV inverter is constrained in a 

similar manner to the BESS inverter: 

((1 − αpv,l(t)) ppv,l(t))
2

+ qpv,l
2 (t) ≤ (spv,l

max)
2

 (9)

0 ≤ αpv,l ≤ 1 (10) 

Due to the intermittency of solar irradiance, ppv,l(t) is

assumed to be an uncontrollable disturbance, whereas 

the reactive power qpv,l(t) can be actively controlled. To

facilitate reactive power control, the PV and battery 
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inverters are oversized to 105% of their rated apparent 

power. 

Radial distribution network 

A single-feeder radial distribution grid consisting of N +
1 buses and the lines connecting these buses is modeled 

by a tree graph as shown in Figure 2. 

Figure 2 Radial network 

The substation bus (root node) is indexed as node 0; this 

node connects to the external transmission network. 

Each node k has a parent node πk and a set of child

nodes, Ck. Node k is characterized by its squared

magnitude voltage vk, as well as the active and reactive

power injections to the node (pk(t) and qk(t),

respectively). Line k, which delivers power from node 

πk to node k, is characterized by resistance rk and

reactance xk, as well as active and reactive power flows

Pk(t) and Qk(t).

Using the simplified LinDistFlow approximation of the 

power flow equations, developed in (Baran and Wu 

1989) and (Kekatos et al. 2015), along with some 

algebraic manipulations, the nodal voltages become a 

linear function of power injections: 

𝐯(t) = 𝐑𝐩(t) + 𝐗𝐪(t) + 𝐯̃ (11) 

where 

● 𝐯(t) = [v1(t), … , vN(t)]T contains the squared

magnitude voltage of each node at time t;

● 𝐩(t) = [p1(t), … , pN(t)]T contains the net

active power injection to each node at time t;

● 𝐪(t) = [q1(t), … , qN(t)]T contains the net

reactive power injection to each node at time t;

● 𝐑 ≔ 2𝐅diag(𝐫)𝐅T, 𝐗 ≔ 2𝐅diag(𝐱)𝐅T with

𝐫, 𝐱, 𝐅 being determined by network parameters

as defined in (Kekatos et al. 2015); and

● 𝐯̃ = 𝟏Nv0 where 𝟏N is a vector of length N with

each element being unity and v0 is the squared

magnitude voltage of the root node.

The per unit nodal voltages must satisfy the limits 

dictated by ANSI C84.1 (ANSI 2016) at each time t: 

0.952 = vmin ≤ vk(t) ≤ vmax = 1.052    ∀k, t (12)

Building-to-distribution network integration 

The buildings, PV generation devices, and battery 

energy storage systems are integrated to the distribution 

network through power balance equations (as illustrated 

in Figure 3). 

Figure 3 Buildings integrated into distribution network 

Each node’s active power injection pk(t) is a balance

between the total power demand from all buildings 

served by the node (with node k serving Nb,k buildings),

the power generated by their PV devices, the active 

power charged or discharged by their battery devices, 

and the uncontrollable active power base load at that 

node. Similarly, the reactive power injection at node 

k,  qk(t), is a balance between the total reactive power

demand from all buildings, the reactive power charged 

or discharged by their PV and battery inverters, and the 

uncontrollable reactive power base load. These 

relationships are modeled mathematically in equations 

(13) and (14):

pk(t) = ∑ (ppv,l(t) − pbat,l(t) −
Nb,k

l=1

phvac,l(t) − pmisc,l(t))  − pBLk
(t) (13) 

qk(t) = ∑ (qpv,l(t) − qbat,l(t) −
Nb,k

l=1

qmisc,l(t)) − qBLk
(t) (14) 

where pmisc,l(t) and qmisc,l(t) denote the miscellaneous

active and reactive power demand for building l. These 

miscellaneous loads can include lights, various devices, 

and plug loads. The HVAC reactive power qhvac is not

considered in equation (14) because it is assumed that 

each HVAC device incorporates a built-in capacitor to 

supply its own reactive power, as is standard in the 

industry. 

PROBLEM FORMULATION 

Model predictive control 

Model predictive control (or receding horizon control) 

relies on the system dynamic model. At a time step t, the 

controller solves an optimization problem over a 

prediction horizon Tp, resulting in an optimal control

profile 𝐮∗ = {𝐮(t), … , 𝐮(t + Tp)} consisting of Tp

control actions. The first step of 𝐮∗ is implemented, after
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which the horizon recedes by a time span Th, the “current

time” t becomes t + Th, and the process repeats. MPC’s

advantage lies in its ability to take into account future 

conditions when making control decisions for the 

present. The general form of an MPC optimization 

problem (𝒫0) is as follows:

min J = ∑ f
t+Th
τ=t+1 (𝐱(τ), 𝐮(τ)) 

(𝒫0) 

s. t. 𝐱 ∈ X

𝐮 ∈ U 

𝐱(t + 1) = 𝐀̃𝐱(t) + 𝐁̃u𝐮(t) + 𝐁̃w𝐰(t) 

In this study we apply a fully centralized approach to the 

joint optimization problem. The joint optimization 

problem (𝒫)is postulated as: 

min 

J =
1

Tp

∑[
1

2v0

ρloss(𝐩T(t)𝐑𝐩(t) +

Tp

t=1

𝐪T(t)𝐑𝐪(t)) + ρϵb
𝛜b(t)]

over {𝐩hvac(t), 𝐩bat(t), 𝐪bat(t), 𝐪pv(t), 𝛂pv(t), 

𝐱b(t), 𝐱bat(t), 𝐯(t)}t=1

Tp

s. t. (2) – (14) (𝒫) 

where 

● 𝐩(t) and 𝐪(t) are vectors that collect the nodal

active and reactive power injections

pk(t), qk(t) for each node k;

● ρloss and ρϵb
 are weights used to tune the

relative importance of the grid and building

objectives;

● 𝐩hvac(t), 𝐩bat(t), 𝐪bat(t), 𝐪pv(t), 𝛂pv(t), 𝐱b(t),

and 𝐱bat(t) are vectors collecting HVAC power

consumption, battery active power charge/

discharge, battery reactive power set-points, PV

reactive power set-points, PV active power

curtailment, building state, and battery state for

each building l;

● 𝛜b(t) is a vector that collects the temperature

set-point violations for each building at time t;
and

● the other quantities are as previously defined.

In the objective function of (𝒫), the first term inside the 

summation penalizes the total network losses over the 

simulation duration. The second term penalizes 

temperature deviations within the buildings. Each 

objective is averaged over the entire simulation time. 

This joint loss function allows the controller to make 

decisions that simultaneously optimize the benefits to 

both the buildings and the distribution network. 

Because we employ a centralized optimization method, 

the controller first aggregates all system data including 

model parameters for each building, BESS, PV, and the 

network; forecasted values for weather disturbances, 

miscellaneous building power demand, and nodal base 

loads (these are assumed to be known in advance); and 

limits on system states and input values. Then the joint 

problem (𝒫) is solved in an iterative fashion according 

to the MPC scheme, with final outputs including optimal 

control set-points for building HVAC systems, battery 

active power charging/discharging set-points, reactive 

power set-points for PV and battery inverters, and PV 

curtailment set-points for PV inverters. 

SIMULATION 

Benchmark algorithm 

The centralized MPC algorithm is benchmarked against 

a naïve rule-based control (RBC) algorithm. The 

algorithm consists of two heuristic sub-algorithms – one 

for the building and one for the battery. The building 

sub-algorithm controls the building HVAC power 

depending solely on the zone temperature: if the 

temperature is above the cooling set-point, HVAC power 

is increased; else HVAC power is set to zero. The battery 

sub-algorithm controls the battery charging/discharging 

power based on battery SOC and available PV power: if 

the available PV power is enough to satisfy building 

demand, then any remaining power is used to charge the 

battery (assuming the battery is not yet full – if it is full, 

any excess power is assumed curtailed). If building 

demand is greater than the PV power available, then the 

battery is discharged to help meet the demand (assuming 

the battery is not empty – if it is empty, then power is 

drawn from the grid to meet the building load. The RBC 

algorithm excludes reactive power control of the PV and 

battery. 

Pilot simulation 

A pilot simulation was performed to demonstrate the 

value of the BtDN framework. In this simulation, a 4-bus 

network serves 50 residential and 2 commercial 

buildings. The total simulation time is 24 hours, with the 

optimization being solved over a prediction horizon Tp

of 6 hours; the horizon recedes Th = 1 hour at each

iteration. Building control horizon is 15 minutes; since 

the power generated by solar panels varies by 15% of its 

nameplate rating within one-minute intervals, we have 

assumed a control horizon of 1 minute for both PV and 

battery inverters (Wang et al. 2016).  

With the LinDistFlow approximations for power 

distribution network, linear and quadratic constraints, 

and quadratic objective function, the problem (𝒫) is a 

quadratically constrained quadratic problem (QCQP) 

and can therefore be easily solved by off-the-shelf 
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solvers. The simulations for this study were performed 

using MATLAB/CVX (Grant and Boyd 2014) using the 

solver Gurobi (Gurobi 2019).  

RESULTS AND DISCUSSION 

The results of the pilot simulation are presented in 

Figures 4 and 5. In Figure 4, the top row shows the 

results for the RBC algorithm; the bottom row shows the 

MPC results. The left column plots the voltage at the 

terminal node over the course of the simulation (solid 

blue line) with the ANSI C84.1 limits represented by 

dashed black lines. The solid orange line represents the 

voltage in a scenario where reactive power support (Q-

support) is disabled. The right column plots the power 

consumed by a single commercial building HVAC 

system (solid blue line) along with ambient temperature 

(dotted orange line), zone temperature (dot-dashed green 

line), and temperature set-points (dashed black lines). 

Here we note that there is a single line for HVAC power 

in the predictive control case because the power 

consumption curves for the two MPC scenarios (with 

and without Q-support) are extremely similar. The same 

applies for the building indoor temperature. 

In this study, the network power flows and voltages are 

calculated using the LinDistFlow approximation of 

nonlinear power flow equations. The control set-points 

computed in the centralized optimization are validated 

using the actual nonlinear power flow (Z-bus method) 

outlined in (Bazrafshan and Gatsis 2018). In particular, 

the nodal voltages and resulting average thermal losses 

are computed using the Z-bus method. 

Under the RBC algorithm, nodal voltage drops gradually 

throughout the day until 6 pm, dipping below the lower 

limit once around 5:30 pm. This is due to the fact that the 

residential loads are gradually increasing in the evening, 

at the same time that PV generation naturally decreases. 

In addition, the voltage profile contains several sudden 

changes, such as spikes or sudden steep drops. These 

instabilities are caused by changes in outdoor 

temperature and solar radiation which, when combined 

with building temperature set-point changes, cause 

building loads to change drastically, placing strain on the 

distribution network.  

Under MPC the voltage exhibits a much more stable 

profile; the voltage never drops below 0.98 per unit 

(when Q-support is enabled) or 0.96 per unit (when Q-

support is disabled) and experiences fewer sudden 

changes. Furthermore, the changes that are present in the 

voltage profile are less drastic than those in the RBC 

profile, whether Q-support is present or not. 

With Q-support enabled, the MPC algorithm utilizes 

reactive power control of PV and BESS inverters to 

support the grid throughout the day and maintain per unit 

voltage as close to unity as possible (this is seen in Figure 

5). Even with Q-support disabled, the MPC algorithm is 

still able to improve the network voltage and prevent it 

from falling below the lower limit. MPC’s predictive 

ability allows the controller to take actions to mitigate 

Figure 4 Simulation results – voltage and HVAC power 
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voltage issues before they occur, exhibiting a behavior 

analogous to pre-cooling a space prior to a steep increase 

in outdoor temperature. This smoothed voltage profile 

leads to increased grid stability and reliability and 

ensures that customers will not experience a drop in 

power quality during times of peak load. 

When controlled by MPC, the building’s peak load 

increases compared to the RBC; this is due to the lack of 

energy pricing data. Since energy is the same price at all 

times of day from the controller’s perspective, there is no 

incentive to reduce peak usage (time-variable energy 

pricing will be introduced in future work). Additionally, 

the MPC controller exhibits pre-cooling behavior during 

the early hours of the morning, resulting in a peak of 

greater magnitude but shorter duration than the RBC. We 

also note that the MPC maintains a smoother temperature 

profile throughout the day thanks to its predictive ability, 

whereas the RBC allows the temperature to reach (and in 

some cases violate) the set-point before taking corrective 

action. 

In Figure 5, the top and bottom rows show the results for 

RBC and MPC simulations, respectively. The three 

columns show battery active, battery reactive, and PV 

reactive power profiles for a single commercial building. 

(In this figure, positive values indicate power injection 

into the grid; negative values indicate power consump-

tion.) Similarly to Figure 4, the predictive control plots 

show results for two scenarios – with and without Q-

support. Under the RBC algorithm, the battery 

discharges once around 4:00 pm (when the outdoor 

temperature and consequently building load are greatest) 

and charges briefly in the middle of the night. Under the 

MPC algorithms, however, the battery discharges and 

recharges throughout the day in smaller quantities; this 

allows the battery to provide more flexible active power 

support to the building while also providing reactive 

power support to the distribution network (when Q-

support is enabled). As the figure shows, both the battery 

and PV inverter act as reactive sources for most of the 

day, injecting reactive power to the distribution network 

to maintain voltages as close to unity as possible. 

Table 1 presents further results of this simulation study 

– specifically, the average thermal line losses and total

energy use under each algorithm. Even without reactive

power support, the centralized MPC algorithm without

Q-support improves the performance of the distribution

network (losses are improved) and the building (energy

use is reduced) by 28.7 and 24.2 percent respectively.

Once Q-support is enabled, the MPC algorithm achieves

an additional 11.3 percent improvement in average

thermal losses for a total of 40 percent savings over the

baseline case. These results strongly demonstrate how

the centralized nature of the control algorithm works to

its advantage, as the controller is aware of the states of

all components throughout the network and implements

actions that maximize the benefit to the entire system.

Figure 5 Simulation results – battery and PV power 
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Table 1 Comparison of control algorithms 

ALGORITHM LOSSES (KW) ENERGY (KWH) 
RBC 3.10 5520 
MPC (Q disabled) 2.21 4184 
MPC (Q enabled) 1.86 4180 
Improvement (28.7) 40.0 % (24.2) 24.3 % 

CONCLUSION 

This paper presents a flexible framework for integrating 

buildings and distributed energy resources including PV 

generation devices and battery energy storage devices 

into the power distribution network. The framework 

couples the distribution network together with the 

building control actions and operational decisions. A 

centralized model predictive control algorithm is applied 

to the framework in order to optimally control a small 

network in a simulation study. The results of the study 

demonstrate the utility and advantage of the framework 

as well as the centralized controller. 

This pilot study is limited in two ways. Firstly, though 

the developed framework is flexible enough to accom-

modate different types of building thermal models and 

differing levels of PV and battery penetration, those fea-

tures were not explored in this study – each building is 

modeled using the same model (with different parameter 

values) and each building is furthermore assumed to 

have an associated PV device and battery. Secondly, this 

study does not include a sensitivity analysis of the 

framework and controller to different initial values and 

uncertainty in the disturbances (i.e., a perfect forecast is 

assumed). Future extensions of this work will close these 

two gaps, as well as expanding the size of the simulation 

studies to include benchmark networks and comparing 

the control algorithm performance to more sophisticated 

baseline algorithms. 

Besides the two limitations already mentioned, there are 

two other considerations that are less pressing yet 

nevertheless of interest. The first is the trade-off between 

centralized and decentralized control. In general, 

centralized control results in better objective function 

values than decentralized control, while requiring greater 

computational time and resources due to the large 

amount of data that must be stored and manipulated. 

Additionally, centralized control places a higher 

communication burden on the entire system, as each 

component must send its state data to the controller at 

each time-step. This trade-off will be explored in a future 

extension of this study. The second consideration is that 

of implementation. Many existing buildings lack the 

necessary infrastructure, sensors, and equipment to 

implement advanced building controls such as MPC. 

Exploration of this challenge is currently outside the 

scope of this work. 

ACKNOWLEDGMENT 

This work was supported by the U.S. National Science 

Foundation under Award No. 1949372 and Award No. 

1847125. 

NOMENCLATURE 

Model parameters 

R1, R2, Rwin Building envelope thermal 

resistances 
m2K/W

C, Czone Building thermal 

conductances 
W/m2K

kg Discretized time-step 

length 

s 

Tsb
Discretization sampling 

time 

s 

sbat
max, spv

max (Battery, PV) inverter 

apparent power rating  

VA 

r, x Line (resistance, reactance) Ω 

ρloss, ρϵb
(Distribution network, 

building) objective weight 

– 

Tp Prediction horizon s 

Th Horizon receding distance s 

Model states 

Twall, Tzone Building (wall, zone) 

temperature 

K 

SOC Battery state of charge – 

Model variables 

phvac HVAC active power  W 

pbat, qbat Battery (active, reactive) 

power 

W, Var 

qpv PV reactive power Var 

αpv PV curtailment ratio – 

v Nodal voltage Vpu

P Line active power flow W 

Q Line reactive power flow Var 

ϵb Temperature set-point 

violation 
K 

Model disturbances 

Tamb Ambient temperature K 

Q̇sol, Q̇int (Solar, Internal) heat gains W 

ppv PV active power W 

pmisc, qmisc Miscellaneous (active, 

reactive) power load 

W, Var 

pBL, qBL Base (active, reactive) load W, Var 

Indices 

k Node index 

l Building index
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