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ABSTRACT 

This paper proposes a machine learning based 

optimization approach to reduce building total 

electricity consumption for heating and cooling energy. 

The proposed approach includes three main steps. 

Firstly, sampling of base-case building design variables 

and corresponding simulation results were obtained in 

EnergyPlus to generate features/labels. As the next step, 

a Machine Learning (ML) Model based on Support 

Vector Regression algorithm to predict energy 

consumption was created. Thirdly, Bayesian 

optimization was performed on the ML model to 

determine the optimum values for design variables. A 

hypothetical office building was used as a case study in 

order to demonstrate the feasibility of the proposed 

approach. The results showed that the proposed 

machine learning based approach is very accurate in 

estimating the total energy consumption, and easily 

integrated to any black-box optimization techniques 

with much less computational cost.  

INTRODUCTION 

Improving energy efficiency in buildings is a complex 

process since buildings consist of numerous interrelated 

sub-systems (i.e. structural system and building 

materials, HVAC systems, building services) that 

influence the overall building performance (Hong et al., 

2018). Applications of optimization methods with 

building simulation tools for handling these complex 

systems have emerged as a promising method, and 

therefore using optimization methods during this 

process play a key role for achieving high performance 

buildings (Evins, 2013).  

In recent years, there are numerous studies that focus on 

optimizing building design and operations in order to 

ensure energy efficiency and thermal comfort in a cost 

effective manner. In most of these studies, the 

optimization process is based on connecting building 

performance simulation tools (e.g. EnergyPlus and 

TRNSYS) and algorithmic optimization engines 

(involving general optimization packages, custom 

programmed algorithms and special optimization tools) 

(e.g. GenOpt, BEopt and Matlab). For example, an 

optimization tool named MultiOpt based on a 

combination of genetic algorithm (GA) (NSGA-II) with 

TRNSYS energy simulation program was developed in 

order to determine the most effective building envelope 

and control system solutions while optimizing building 

energy consumption, cost, thermal comfort and life-

cycle environmental impact (Chantrelle et al., 2011). A 

multi-objective optimization model involving direct 

coupling of the GenOpt optimization program, 

TRNSYS simulation program, and Matlab was 

introduced for identifying the most effective set of 

energy retrofit alternatives that maximize building 

energy savings and thermal comfort while minimizing 

energy retrofit costs simultaneously (Asadi et al., 2012). 

A coupling framework involving the EnergyPlus 

building energy simulation and the multi-dimensional 

numerical optimization employed by GenOpt 

optimization engine was used in order to find 

appropriate building envelope retrofitting applications 

that minimize building life cycle costs (Karaguzel et al., 

2014). An optimization methodology based on coupling 

EnergyPlus with MATLAB was presented to optimize 

building envelope design parameters that ensure 

minimum energy demand while maximizing thermal 

comfort (Ascione et al., 2015). A simulation-based 

multi-objective optimization approach that couples a 

multi-objective particle swarm optimization algorithm 

embedded in jEPlus optimization engine with 

EnergyPlus simulation program was introduced in order 

to identify the most appropriate building solutions for 

minimizing building energy consumption (Delgarm et 

al., 2016). A decision-support framework including 

integration between a multi- objective optimization and 

sensitivity analysis performed by coupling GenOpt with 
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EnergyPlus was proposed in order to find the optimum 

set of energy retrofit solutions for an existing school 

building (Senel Solmaz et al., 2018). Similarly, A 

multi-objective optimization approach based on 

integration between EnergyPlus and GenOpt 

optimization program was used to optimize four 

objective criteria with: building heating and cooling 

energy savings, occupant thermal comfort and the 

financial metric, net present value (NPV) 

simultaneously. The "weighted-sum" approach was 

utilized to formulate optimization problem. As for the 

design variables, building envelope related parameters 

were chosen to find an optimum set of building energy 

efficiency solutions (Senel Solmaz, 2018). 

Although a simulation-based single or multi-objective 

optimization approaches have been studied extensively, 

one of main drawbacks of this process is the necessity 

of vast number of simulation evaluations, being 

computationally expensive. Simulation of detailed 

building energy models generally takes time due to its 

complexity, and during simulation-based optimization 

process, it is mostly necessary to make a large number 

of simulation evaluations. Hence these approaches may 

therefore become infeasible due to such high 

computational cost of building models. In order to 

overcome this, simplified models instead of detailed 

building models, namely “surrogate model”, have 

become popular. A surrogate model (meta-model) is a 

prediction model of the original simulation model, and 

it reliably mimics its behaviour. There are several 

methods have been used in order to construct the 

surrogate model based on the data set, e.g. artificial 

neural network (ANN), support vector machine (SVM) 

and Kriging (Nguyen et. al., 2014). Though a surrogate 

based optimization that indicates the use of developed 

prediction model instead of original simulation model 

in optimization process for the evaluation of individuals 

is outstanding in terms of computational efficiency, 

developing an accurate surrogate model is a big 

challenge of this process, and that still needs to be 

overcome (Li et al., 2017). When looking at the 

research effort in this area, for example, an optimization 

methodology based on integration of artificial neural 

network (ANN) with GA (NSGA-II) was proposed in 

order to minimise energy consumption and construction 

cost of residential buildings. First, the ANN based 

prediction model was developed, and then using that 

model in optimization, several envelope and HVAC 

related parameters were optimized to ensure building 

energy efficiency (Magnier and Haghighat, 2010). A 

prediction model based on ANN for thermal comfort 

index and annual energy consumption forecasting was 

developed, and then combined with multi-objective GA 

in order to identfy the optimum values of building 

envelope materials’ thermal properties that ensure the 

optimum energy consumption and thermal comfort 

concurrently (Gossard et al., 2013). Similarly, a multi-

objective optimization model involving combination of 

ANN with GA was proposed for identifying the most 

effective building energy retrofit strategies that 

minimize building energy consumption, retrofit cost 

while maximize thermal comfort (Asadi et al., 2014). 

An optimization framework named as CASA based on 

integration of ANNs and multi-objective GA for 

assessment of cost-optimal energy retrofit strategies. 

ANNs was used to performance prediction of buildings, 

and by using that model GA was performed for optimal 

building energy retrofit solutions (Ascione et al., 2017). 

A machine learning based optimization approach 

involving sequential application of support vector 

machine (SVM) and GA was developed to optimize a 

set of occupant related design variables for minimizing 

cooling energy consumption and maximizing thermal 

comfort of building (Amasyali and Gohari, 2018). A 

robust surrogate ANN model for predicting building 

energy consumption was developed by using data from 

simulation-based multi-objective optimization model 

that was employed for determining an optimal set of 

renovation solutions in order to optimize building 

energy consumption, life-cycle cost (LCC), and life-

cycle assessment (LCA) simultaneously (Sharif and 

Hammad, 2019). A multi objective optimization 

approach based on an ANN and best algorithm values 

derived from performance evaluation of four different 

multi-objective algorithms was proposed to design 

optimization of complex buildings for improving 

energy efficiency and indoor thermal comfort (Si et al., 

2019). A surrogate model developed by using ANN 

was utilized to reduce the computing time. The results 

indicated that within the four multi-objective 

optimization algorithm, the NSGA-II performed the 

best.  

The research efforts on building performance 

optimization summarized above are all significant and 

also indicate how important optimization of building 

design and operations per several performance criteria 

is. However, there is still room for investigating the 

integration of optimization algorithms with surrogate 

model approaches for getting model with good 

accuracy and less computational time. To this end, this 

study presents a machine learning (ML) based 

optimization approach using a machine learning 

method, Support Vector Regression (SVR), and 

Bayesian optimization in an integrative way to optimize 

building design parameters and minimize building total 

electricity for energy consumption.  
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RESEARCH METHODOLOGY 

The general framework of the proposed approach is 

presented in Figure 1. A machine learning optimization 

approach consists of the application of three sequential 

steps: 1) Creating a building energy model (base-case 

model) in EnergyPlus, followed by input parameter 

sampling and energy simulations, 2) Feeding simulated 

input-output relations to ML algorithm as 

features/labels and model creation, 3) Bayesian black-

box optimization to minimize the total electricity for 

building energy consumption.  

In order to create a database for ML based prediction 

model training, design variables were defined with min-

max value ranges, input sampling was done using 

uniform distrubution, and a number of EnergyPlus input 

files (.idf) from sampled values were generated. After 

that, the evalution/simulation of all these files were 

executed in EnergyPlus. At this point, in order to 

automate the whole process of both the generation of 

input (.idf) files and reading EnergyPlus output files 

(.eso) from associated simulation runs, custom Python 

scripts were used.  

Figure 1. A machine learning based optimization 

framework 

After obtaining the sampled inputs and associated 

output values (i.e. machine learning features and 

labels), the prediction model was generated. Lastly, 

once trained and validated, the prediction model was 

used as a black-box model as evaluation function for 

building energy consumption estimation in Bayesian 

optimization.  

CASE STUDY 

Building Energy Model (Base-case model) 

In this study, a medium-sized office building in 

EnergyPlus (Figure 2), which is one of the 16 

commercial reference building models developed by the 

U.S. Department of Energy (DOE), was used as a base-

case model. Therefore, it is compatible with EnergyPlus 

(Deru et al., 2006). The base-case model is a three-story 

building oriented in south-north direction. There are a 

total of 3 plenums, 12 perimeter zones, and 3 core 

zones. Total floor area is 4982 m2 (53625.8ft2), while 

the total building height is 11.88 m (38.98ft). The 

glazing are uniformly distributed in the horizontal 

direction with a glazing ratio of 33 %. 

Figure 2. The base-case building’s 3D energy model 

Although the original geometry and HVAC system (the 

multi-zone variable air volume (MZ-VAV)) of the DOE 

reference building were kept, the envelope materials 

and their thermophysical properties were modified 

based on the construction standards in Turkey (Turkish 

Standard Institution, 2008). The building location is in 

Izmir-Turkey which has hot-humid climate features, 

and simulations were done using ASHRAE IWEC 

(International Weather for Energy Calculations) 

weather file. The cooling set point is 24°C and the 

heating set point is 22°C while the setback temperatures 

are 26°C and 16°C respectively.  

The total energy consumption in this paper is the 

electricity used only for heating and cooling, not 

including facility, interior equipment and lights.  

Machine Learning Model Creation and Validation 

Input sampling and evaluation 

In order to train the ML model, a dataset including 

input and associated output values is needed. The input 

is several envelope design variables highly influencial 

on building energy performance The min-max ranges 

were defined for each input as part of sampling process 

(Table 1). As seen on Table 1, some variables were 

defined with only one parameter while others had more. 
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Sampling/
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SVR Model 
Creation 

Black Box 
Model for 

Optimization 

Model 
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Bayesian 
Optimization 
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For instance, wall, roof and floor have only thermal 

insulation material thickness as an input and the rest of 

the thermophysical properties of insulation material 

such as thermal conductivity, specific heat and density 

values were fixed. On the other hand, windows had U-

value and Solar Heat Gain Coefficient (SHGC) at the 

same time.   

Table 1 Selected design variables and their min-max 

value ranges for input sampling process.1 meter is 

equal to 3.28ft. 

NO VARIABLES UNIT MIN MAX 

1 

Thermal Insulation 

thickness of 

exterior wall 

m 0.001 0.12 

2 
Thermal Insulation 

thickness of roof 
m 0.001 0.20 

3 
Thermal Insulation 

thickness of floor 
m 0.001 0.10 

4 
Window U 

value 
W/m2K 1 6.0 

5 
Window SHGC 

value 
- 0.5 1.0 

8 
Shading material 

depth (South wind.) 
m 0.001 1.0 

7 
Shading material 

depth (West wind.) 
m 0.001 1.0 

8 
Shading material 

angle (South wind.) 

degree 

() 
45 90 

9 
Shading material 

angle (West wind.) 

degree 

() 
45 90 

By using random uniform distribution data sampling, a 

sample of 100 values within defined min-max ranges 

were simultaneously generated for each input. Then, 

model reproducer code processed base-case EnergyPlus 

input file (.idf), found the relevant variables and 

assigned values based on the generated input matrix, 

and saved as a new (.idf) file for each sample. A total of 

100 (.idf) files were generated, and further simulated in 

EnergyPlus, and output values from output files (.eso) 

including building total energy consumption values 

were gathered automatically. The total simulation time 

of 100 cases took around 1.3h (46 sec for each 

simulation) using a computer equipped with Intel i7 

Quad-Core CPU 2.2 GHz, 8 GB RAM. The distribution 

of total energy consumption is presented in Figure 3 

where the lowest, mean and highest values in total 

energy consumption across all 100 cases are 163,433 

kWh, 222,527 kWh, and 292,475 kWh respectively 

with 28,776 kWh standart deviation.   

Figure 3 Distribution of energy consumption data 

obtained in EnergyPlus. 

SVR-based ML model development and performance 

evaluation 

The obtained input/output data was used as 

features/labels for SVR model generation. SVR 

algorithm was chosen because it works great for such 

non-linear models using kernel transformation. Scikit-

Learn ML package was used for SVR model creation, 

training, validation and saving (Pedregosa et al., 2011). 

A sample of 100 cases was used for SVR training and 

Root Mean Square Error (RMSE) was used as loss 

function. During model generation, 5-fold cross 

validation was used to ensure good generatilization of 

the model, and hyper-parameter tuning was performed 

for better RMSE.  

The actual heating and cooling energy values were 

plotted in Figure 4a, while the actual and predicted total 

energy consumption values for each simulation plotted 

in Figure 4b shows almost a perfect match, with RMSE 

of 0.1412 for normalized output values. Figure 4c 

shows great correlation between the actual and 

predicted values and linear-fit with Coefficient of 

Determination (R2) value of 0.9813. Both plots show 

how well the SVR model performs compared to 

EnergyPlus simulation software. Hence, the SVR model 

created can instantly predict building energy 

consumption with great accuracy compared to 46sec 

simulation time in EnergyPlus.  
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(a) 

(b) 

(c) 

Figure 4. ML model validation: a) Actual heating and 

cooling energy consumption values from 100 input files 

b) The actual (EnergyPlus) vs. predicted (SVR) total

energy consumption values with RMSE of 0.1412. c)

Almost perfect linear relationship between the actual

and predicted energy consumption values and linear-fit

with R2 of 0.9813. 

Bayesian Optimization 

The SVR model created was used as the black-box for 

the optimization step and Bayesian Optimization was 

chosen as the algorithm in order to determine the 

optimal values for defined design variables and 

minimize the building energy consumption. Bayesian 

black-box Optimization is an appropriate selection due 

to the lack of any analytic equation to describe the 

energy model, which is complex and noisy in nature. It 

treats the energy model as a true black-box and tries to 

minimize f(x) by adjusting inputs in trial-error 

approach. The Bayesian optimization algorithm of the 

Scikit-Optimize package (GitHub, 2019) was used for 

single-objective optimization.  

The optimization algorithm takes a total of 9 decision 

variables as inputs: thermal insulation thicknesses of 

exterior wall (xwall), roof (xroof) and floor (xfloor), window 

U (xwin-U) and SHGC (xwin-SHGC) values, shading material 

depth values for south (xshadD-s) and west (xshadD-w) 

windows, and shading material angle values for south 

(xshadA-s) and west (xshadA-w) windows, and a single 

output, total energy consumption f(x). Hence the 

optimization problem can be formulated as follows:  

min 𝑓(𝑥) 

subject to     0.01 ≤ 𝑥𝑤𝑎𝑙𝑙 ≤ 0.12

0.01 ≤ 𝑥𝑟𝑜𝑜𝑓 ≤ 0.2

0.01 ≤ 𝑥𝑓𝑙𝑜𝑜𝑟 ≤ 0.1

1 ≤ 𝑥𝑤𝑖𝑛−𝑈 ≤ 6

0.5 ≤ 𝑥𝑤𝑖𝑛−𝑆𝐻𝐺𝐶 ≤ 1

0 ≤ 𝑥𝑠ℎ𝑎𝑑𝐷−𝑠 ≤ 1

0 ≤ 𝑥𝑠ℎ𝑎𝑑𝐷−𝑤 ≤ 1

45 ≤ 𝑥𝑠ℎ𝑎𝑑𝐴−𝑠 ≤ 90

45 ≤ 𝑥𝑠ℎ𝑎𝑑𝐴−𝑤 ≤ 90

(1) 

The Bayesian optimization was set with random input 

variables to start with and limited to 50 calls. Figure 5 

shows the objective function (total energy 

consumption) at each optimization step. It makes ~35% 

improvement within the first 10 steps and quickly 

converges around 30th step with close to 90% 

improvement. The optimum value was found to be 

129,670 kWh, with the best-reported values for input 

parameters (Table 2). The total simulation time for 50 

iterations was less than 1min.  

Plugging the best parameters from Table 2 into 

EnergyPlus and re-running the simulation again, we see 

a difference of 2.81% with the actual simulation result.  
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Figure 5 Optimization iterations and reduction in Total 

Energy Consumption. 

The total energy consumption includes both heating and 

cooling energy consumption, so the result is expected to 

be a balanced decrease for both consumptions. 

According to optimization results, for example, the 

optimum thickness of thermal insulation material for 

wall, and floor were found 0.08 m (3.15in), and 0.01 m 

(0.39in) respectively. This value is 0.16 m (6.30in) for 

roof, which is much higher than wall and floor. This 

result is logical considering the positive impact of roof 

thermal insulation on both heating and cooling energy 

savings, so total energy savings on hot-humid climates, 

and also the size of roof area. In another words, 

application of insulation materials on roof surface is 

more effective than for wall and floor surface thermal 

insulation (Senel Solmaz et al., 2016). The thermal 

insulation material with almost lowest thickness (0.01 

m) was assigned to the ground floor. This may be due

to insulation material negatively affecting the buildings

cooling energy consumption even if it has a positive

impact on heating energy savings for hot-humid

climates as cooling energy consumption is more

dominated than heating energy consumption in base-

case building (Senel Solmaz, 2018). Similarly, the

optimum thermal insulation material’s thickness for all

exterior walls (0.08 m) is not the maximum amount.

Table 2 Optimum values for selected design variables. 

1 meter is equal to 39.37in) 

NO VARIABLES UNIT 
OPTIMUM 

VALUES 

1 

Thermal Insulation 

thickness of exterior 

wall 

m 0.08 

2 
Thermal Insulation 

thickness of roof 
m 0.16 

3 
Thermal Insulation 

thickness of floor 
m 0.01 

4 Window U value W/m2K 1.0 

5 
Window SHGC 

value 
- 0.50 

8 
Shading material 

depth (South wind.) 
m 0.54 

7 
Shading material 

depth (West wind.) 
m 1.0 

8 
Shading material 

angle (South wind.) 

degree 

() 
63.39 

9 
Shading material 

angle (West wind.) 

degree 

() 
90 

As for the optimum values of window parameters, the 

optimization algorithm chose the window material 

having the lowest U (1.0 W/m2K) value and mean 

SHGC value (0.5). When considering the positive 

impact of windows with lower U values on decreasing 

both heating and cooling energy consumption, it is 

logical to select the lowest U value for windows. For 

the SHGC, although it has positive effect on heating 

energy savings, it affects cooling energy savings 

negatively. Therefore, considering the total energy 

consumption, the optimization algorithm may try to 

make a balance on total energy consumption by 

choosing the almost medium value for window SHGC.  

Lastly for the shading materials, the optimization 

algorithm found the optimum values for south window 

shading depth as 0.54 m, and 63.39 degrees for angle. 

As for the west window shading, the highest value was 

chosen for the shading depth (1.0 m), and shading angle 

was assigned as 90 degrees.  

CONCLUSION 

This paper proposed a machine learning based 

optimization approach in order to reduce building total 

energy consumption. The machine-learning model was 
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built from simulation generated data and later used in 

optimization of building total energy consumption on 

nine building envelope related design variables (e.g. 

thermal insulation thicknesses of exterior wall, roof and 

floor, window U and SHGC values, shading material 

depth and angle values for south and west facades). The 

main findings made in the scope of this study are: 

▪ The proposed machine learning based approach is

very accurate in estimating the total energy

consumption even with low number of features and

easily integrated to any black-box optimization

techniques.

▪ For the best iteration that ensures the minimum

total energy consumption, the optimum values

determined for selected variables on building

envelope is: the optimum thickness of thermal

insulation materials for wall, roof and floor were

0.08 m, 0.12 m and 0.01 m; the optimum U and

SHGC values are 1.0 W/m2K, and 0.5; the

optimum values for shading depth and angle for

south windows were 0.54 m and 63.39 degrees, and

for west windows were 1.0 m and 90 degrees.

▪ The optimization algorithm could find the optimum

result (with a deviation of 2.81% from EnergyPlus

simulated value) in less then 1 min with only 50

iterations, as opposed to hours of optimization time

using traditional approaches. Therefore, using ML

surrogate model during optimization process for

calculation of energy consumption provided a

significant opportunity in term of computational

cost.

As for the limitations of this research, the handled 

problem in this study was a single optimization problem 

and focused on only building total energy consumption 

period. Yet the modular nature of this framework can 

easily be extended to consider multiple objectives (e.g. 

thermal comfort, CO2 emission, life-cycle cost), and 

optimize them simultaneously. This approach can also 

be extended to evaluate different type and/or size 

buildings in different weather conditions, and different 

energy systems (e.g. renewable energy technologies, 

HVAC systems). Another consideration is the number 

of design variables selected. The surrogate model can 

be built with more design variables (orders of 

magnitude more), but requires more simulation data 

beforehand in order to build a better model. Lastly, 

other ML algorithms can be explored with similar 

accuracy and robust prediction model.  
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