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ABSTRACT 

Most design methods contain a forward framework, 

asking for primary specifications of a building to 

generate an output or assess its performance. However, 

architects urge for specific objectives though uncertain 

of the proper design parameters. Deep Learning (DL) 

algorithms provide an intelligent workflow in which the 

system can learn from sequential training experiments. 

This study applies a method using DL algorithms 

towards generating demanded design options. In this 

study, an object recognition problem is investigated to 

initially predict the label of unseen sample images based 

on training dataset consisting of different types of 

synthetic 2D shapes; later, a generative DL algorithm is 

applied to be trained and generate new shapes for given 

labels. In the next step, the algorithm is trained to 

generate a window/wall pattern for desired light/shadow 

performance based on the spatial daylight autonomy 

(sDA) metrics. The experiments show promising results 

both in predicting unseen sample shapes and generating 

new design options. 

INTRODUCTION 

Computational design and simulation tools have helped 

architects and engineers to improve building 

performance in recent decades. Parametric generative 

systems are capable of producing multiple design 

alternatives; however, to find the best design solutions, 

optimization tools need to consider different and mostly 

conflicting design objectives through the alternation of 

design variables (Kumar et al. 2017). Multi-objective 

optimization methods face complicated and time-

consuming challenges to reach the desired results. On 

one hand, the fitness functions need to converge multiple 

quantifiable and sometimes conflicting objectives, and 

on the other hand, many subjective non-quantifiable 

goals may be overlooked (Yan et al. 2015). The process 

of optimization requires step by step calculations and 

consequently demands for significant computation time. 

Although essential improvements are carried out in 

terms of optimization and building assessment tools, 

designers still need to follow a "forward" procedure of 

defining energy-oriented design parameters and their 

value ranges (Rezaee et al. 2018; Shahsavari et al. 2019). 

The optimization methods also spend much time to 

explore a large number of options and experiments, 

known as design space, to find the desired solutions; 

however, in many cases, the architects urge for specific 

performance objectives though uncertain of the design 

parameters and their effective value ranges. A generative 

system may have the potential to explore and learn the 

design vocabulary through analyzing the provided 

dataset of existing solutions without the "explicit 

supervision of the designer" (Bidgoli et al. 2018). 

The advent of Artificial Intelligence (AI) technique has 

brought a new realm of data analysis and applications in 

different fields of science and engineering. The idea of 

machine learning is concerned with training computer 

programs capable of automatic improvement through 

experience (Mitchell 1997). Above that, Deep Learning 

(DL) is a "representation learning method" which allows

computational models to learn variables much deeper

through multiple hidden layers that extract the hidden

characteristics of variables known as latent variables

(Lecun et al. 2015). Successful applications of deep

learning in image recognition, object detection,

autonomous vehicles, drug discovery, and image

reconstruction provide a promising context for its use in

architectural design and optimization.

BACKGROUND 

Architects and engineers apply different methods to find 

the desired/optimized design solutions. In this section 

each method is briefly reviewed.  

Optimization tools 

In order to achieve optimized design performance 

solutions, optimization algorithms need to engage with 

design alternatives, building energy simulation tools, 

and quantitative assessment techniques (Kheiri 2018). 

Based on the review done by Evins (2013) most of the 

recent studies use meta-heuristic algorithmsto achieve 

optimized design solutions. There are several building 

optimization tools using meta-heuristic algorithms, 

including but not limited to: GenOpt (Wetter 2001), 

GENE_ARCH (Caldas 2008), MOBO (Palonen et al. 

2013), MultiOpt (Pernodet et al. 2011), ParaGen (Turrin 
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et al. 2011), Galapagos (Mcneel 2013), Octopus 

(Vierlinger 2014), and Optimo (Rahmani et al. 2015). 

Optimization tools still face many challenges in 

converging multiple conflicting objectives that need step 

by step performance simulations and consequently yield 

in a noticeable amount of computation time. On the other 

hand, the optimization tools could only find solutions 

within the fixed search space that has been defined by 

designers through parametric modeling methods. 

Machine Learning (ML): 

The considerable computation time used by optimization 

methods has brought many studies' attention to the 

application of ML in predicting building performance 

instead of conventional time-consuming simulations. A 

few research projects are done using ML algorithms in 

architectural design and optimization. In this section 

some existing projects are briefly reviewed. 

Zemella et al. (2011) adopt an evolutionary approach 

using a Neural Network (NN) to discover the optimum 

design solutions of a typical office building envelope 

module to reduce the building's energy consumption. 

The study tests the performance of the developed 

algorithms in achieving an energy efficient outcome for 

both single objective and multi-objective optimizations 

(Zemella et al. 2011). In a study done by Harding et al. 

(2011), two ML algorithms are applied to the process of 

designing an exhibition layout that can house flexible 

exhibition configurations. The study employs a self-

organizing map (SOM) to arrange different exhibits and 

convert them into a spatial plans. An unsupervised neural 

network is used to classify the design options to different 

clusters based on their spatial topologies (Harding et al. 

2011). Rahmani et al. (2016) create a Form-based 

Energy Performance Regression Model (FEPRM) 

framework, to provide an energy performance feedback 

to the user based on the building's form transformation 

in the early stages of design. In his study, three ML 

algorithms are employed for a regression model 

framework, and the outputs are compared (Rahmani et 

al. 2016). 

The studies demonstrate that ML application has brought 

development in building design optimization and has 

reduced computation time significantly; however, in 

many cases, design alternatives contain a plenty of 

complex latent variables that may not be analyzed in 

simple ML algorithms with a shallow network structure. 

Deeper networks may perform better in analyzing the 

latent space. Moreover, most of the existing ML methods 

are made for predicting performance results or clustering 

dataset, but not generating design solutions. The 

architects still follow a forward technique in generating 

the desired/optimized solutions; in contrast, a generative 

system may have the potential to learn and explore the 

design syntax and vocabulary through analyzing existing 

datasets and come up with novel options that may not 

necessarily exist in the primary input dataset. 

Generative algorithms using Deep Learning (DL) 

methods: 

ML algorithms with a shallow structure are incapable of 

learning complicated functions with a high level of 

abstractions (Bengio 2009). Most dataset with a large 

number of complex parameters could be  investigated 

through Deep Neural Network (DNN) models that 

contain multiple layers of latent variables to be applied 

successfully in different domains including object 

recognition, information retrieval, classification and 

regression tasks (Salakhutdinov 2015). Furthermore, 

based on DL methods, deep generative models such as 

Pixel Recurrent Neural Network (RNN),  autoencoder 

(AE), variational AE (VAE), and different types of 

Generative Adversarial Networks (GAN) have brought 

researchers’ attention to generating or reconstructing 

samples based on the existing dataset. GAN has 

particularly shown a promising development in recent 

years. In a study done by Yang et al. (2017), new melody 

compositions are generated based on specific melody 

rhythms as training dataset using a novel GAN model 

(Yang et al.  2017). In another study, Elgammal et al. 

(2017) have developed a creative GAN capable of 

generating novel artistic paintings from established 

styles (Elgammal et al. 2017). 

Since the advent of generative models and their 

promising results, a few studies have conducted practical 

research in applications of deep learning generative 

models in design and architecture (Imdat et al. 2018; 

Bidgoli et al.2019; Rahbar et al, 2019; Chaillou 2019; 

Newton 2019).  

The studies are still in progress and may not show 

concrete results; however, the promising results of using 

DL algorithms in other experiments such as image 

processing, face detection, novel music composition, and 

artistic paintings generation, to name a few, motivate the 

architects to study DL as a tool to improve and probably 

transform the design thinking process. Moreover, none 

of the above-mentioned studies use DL for design 

optimization, which is the goal of our study. 

METHODS 

The research methods consist of literature review 

(partially presented in the last section), creating 

prototypes using DL algorithms, and experiments with 

the prototypes’ applications in prediction and generation 

of images and design forms, and analyses of the 

experiment results. The implementation of the 

prototypes consists of applying the following tools:  the 
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Anaconda Python programming platform and Keras 

Deep Learning packages in the backend, and parametric 

modeling tools, Rhino/Grasshopper in the frontend. 

Experiment 1: Shape Classification using 

Convolutional Neural Network (CNN) and 

synthesized imaging data: 

CNN is a deep neural network algorithm that is 

commonly applied to image or object classification. 

CNN is highly efficient in analyzing visual imagery 

compared to its peers' multilayer perceptrons such as the 

fully connected Neural Network (Lecun and Bengio 

1995). The convolutional layers scan images with 

multiple filters to analyze the images' specifications such 

as edges, corners, shapes, etc., which result in various 

feature maps that constitute those images. Figure 1 

shows the structure of a CNN used for this experiment. 

Figure 1  CNN structure based on Krizhevsky et al. 

(2012) 

Experiment 1is done in 3 steps: 

1. Generating 6000 images of simple 2D shapes (which

could potentially represent architectural plans or any

design form outlines), with 6 shape class labels,

automatically using Rhino/Grasshopper’s parametric

modeling capability with random variations.

2. Training the CNN model for the synthetic shapes and

their labels as the input dataset (accuracy: 96 % after 10

training epochs).

3. Testing the trained model for 45 manually drawn

shapes in Photoshop (accuracy: 93%).

Figure 2 shows the major steps from left to right and top 

to bottom: 

Figure 2 Predicting the labels of drawn shapes in 

Photoshop with the trained CNN model 

The algorithm is tested for our synthetic shape dataset. 

The shape dataset used for this experiment are images of 

100 by 100 pixels of simple, 2D shapes which could 

potentially represent architectural plan outlines (based 

on floor plan clustering, e.g. Rodrigues et al. 2017). 6 

types of shape are used including I-shape, L-shape, 

Rectangle, Square, Z-shape, and T-shape. Grasshopper 

components are implemented to parametrically create 

random points in a defined domain of a region where the 

result could be recognized as the demanded shape 

subjectively. Figure 3 graphically represents the 

generating process for the square shape with the random 

points controlled in defined domains. The corner (red) 

points move randomly in a circle area with a specific 

radius amount, and the middle (green) points nudge 

up/down and left/right within their defined domains. The 

points’ locations parametrically change in random 

variations and yield in different square shapes. 

Figure 3 A sample of synthesized shapes from 

predefined points which nudge in the controlled areas 

randomly through parametric modeling 

The shapes are generated in different scales in order to 

induce more variety and complexity to the dataset. The 

total number of 6000 images are created and labeled 

based on their shape types as the input dataset for 

training. The assumption is that the algorithm analyzes 

and detects the specifications of the training set and will 

be able to predict the labels of unseen samples.  
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In the next step, 45 new shapes are manually drawn in 

Photoshop with the same image size and color ranges to 

test the model in predicting the labels of unseen shapes. 

Figure 4 shows some of the manually drawn  shapes in 

Photoshop. 

Figure 4 Sample shapes manually drawn in Photoshop 

Results and Analysis of Experiment 1: 

The CNN used for this study consists of two 

convolutional layers with 30 and 15 filters of 5x5 and 

3x3 pixels accordingly. The model is trained for 10 

epochs with 20 batches. The input dataset is split into 

training and validation set with a proportion of 3 to 1. 

The validation set is a representative of the testing 

dataset to monitor the training process. In Neural 

Network, a loss function is used during the training to 

estimate the difference between the predicted and the 

estimated probability. This error summation, or model's 

loss value, is calculated in the algorithm based on the 

difference between the objects’ true class labels and the 

predicted labels and demonstrates how accurate the 

model works. In a good model, the accuracy improves 

during the training process while the error is minimized. 

Figure 5 shows the model's accuracy and loss of the 

training and validation dataset during the training 

process. 

Figure 5 Left:  Accuracy-epoch curve for training and 

validation datasets; Right:  Loss-epoch curve for 

training and validation datasets.  

The results show that the validation set reaches to good 

accuracy after 10 training epochs (96%). The validation 

loss also arrives to a good value of 0.28  after the training 

process. The experiment shows good result during the 

training process. It also shows satisfying result during 

the test process of predicting the labels of new images 

drawn in Photoshop (accuracy: 93%). 

Experiment 2: Generating shapes with the desired 

labels using Auxiliary Classifier GAN (AC-GAN): 

In the next experiment, a reverse method is applied to 

generating shapes with desired labels. AC-GAN is 

adopted in this study. AC-GAN is a type of GAN 

algorithm that can not only generate new specific data as 

GAN, but also can generate the data with the demanded 

labels (Odena, and Olah, 2016). The algorithm is 

adopted to the shape dataset for generating shapes with 

specific labels. The AC-GAN algorithm has two 

networks called a generator and a discriminator that 

compete with each other for generating specific data. 

The idea is rooted in the "game theory" where each 

network attempts to deceive the other one and hence will 

be trained in this manner (Goodfellow et al. 2014). The 

generator initially generates images with random noises, 

and the discriminator tries to discriminate the generated 

images based on their validity. Through training the 

model with a sufficient number of epochs, the generator 

is able to generate such good images that the 

discriminator cannot detect as invalid. Figure 6 shows 

the structure of AC-GAN used for this experiment. In 

this figure, the shapes are representative of the input 

dataset that is Parametrically Synthesized in 

Grasshopper (PSG). On the other hand, the generator 

generates images through Deep Learning, named as 

Deep Learning Options (DLO). 

Figure 6 AC-GAN structure adopted from  Mirza and 

Osindero (2014) and, Odena, Olah, and Shlens (2016) 

The goal is to generate a desired new shape within the 

limitation of 6 shape class labels. Figure 7 shows the 

workflow and the generated images by the trained 

model.  
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Figure 7 left to right/top to bottom: Experiment 2 

workflow and some examples of the generated dataset 

using the AC-GAN algorithm, plotted after 4800 

training epochs 

Results and Analysis of Experiment 2: 

The AC-GAN algorithm used in this study consists of 

two CNN algorithms for generator and discriminator. 

The model is trained in 5000 epochs with a batch size of 

32 for 2616 shapes of the 6 types. When the model is 

trained, it only takes a few seconds to load the trained 

model and less than a second to generate the desired 

shapes. Figure 8 shows discriminator and generator loss 

over 5000 epochs. 

Figure 8 Loss-epoch curve for the discriminator and 

generator of the AC-GAN model trained for shape 

generation 

The discriminator 's loss arrives to value 1.1, and the 

generator's loss reaches to value 2.2 after training 

process. The trained model shows an overall good 

performance in generating new shapes of defined labels. 

Figure 9 shows some shapes generated by the AC-GAN 

model. In this figure none of the generated shapes 

originally existed in the input dataset. Specifically, the 

T-shape shows a novel result that changed the alignment

of the left and right edges below its hat. This result

presents an innovation in the generator model, because it

did not exist in the search space of the original

parametric model of the shapes.

Figure 9 Some samples of the shapes generated by the 

AC-GAN model after being trained for 5000 epochs   

Experiment 3: Generating light/shadow patterns of 

window/wall based on daylight performance using 

AC-GAN: 

In this experiment, the same form generation method is 

applied to generate light/shadow patterns of a 

hypothetical building facade based on a simple room of 

10m x 10m x 4m in Grasshopper. The south facade is 

divided into 18 by 8 grid of 0.5m × 0.5m cells with a 

0.5m margin from each side. The facade has total 

number of 144 cells which represent a parametric 

light/shadow pattern of wall/window components. A 

Python script is used to parametrically light up a random 

cell in sequence from 1 to 143 in 143 runs accordingly 

with a repeatable random seed (Run #0 creates 1 window 

cell and 143 opaque cells, Run #1 creates 2 window cells 

and 142 opaque cells, …,  and Run #142 shows 143 

window cells and 1 opaque cell). An annual daylight 

simulation is done with DIVA4 which provides Spatial 

Daylight Autonomy (sDA 300, 50%) of the plane work 

for each pattern parametrically. sDA demonstrates the 

percentage of the work plane, that for more than 50% of 

occupied hours receives 300 lux or more for a defined 

period of time (Illuminating Energy Society, IES). In this 

study, sDA is only used for labeling the day-lighting 

performance. Glare metric is not studied for this 

experiment. Based on the IES standard, the sensor plane 

is located 0.75 m above the ground with 0.6 m sensor 

spacing. 

Figure 10 top shows some examples of the synthetic 

patterns of light/shadow used as the training dataset and, 
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Figure 10 bottom shows the digital model drawn in 

Grasshopper after daylight simulation for one 

synthesized pattern. 

Figure 10 Top: synthetic pattern images of 

light/shadow used as input dataset; 

Figure 10 Bottom: digital model showing one 

generated pattern simulated with Diva4 

All simulations are done for annual sDA using common 

building materials with the Houston, Texas TMY 

weather file. Every simulation is done parametrically 

with each window/wall pattern generated in 

Grasshopper, and the sDA metric for each pattern is 

automatically saved after each simulation. All sDA 

results are then saved as labels in a text file after 

completion of each set of runs where each run consists 

of 143 runs of window/wall pattern with a specific 

random seed. The whole experiment is repeated for 4 sets 

of runs with different random seeds ( seed #0 to seed #3) 

to generate various random patterns as the input dataset. 

The total number of 572 (4 × 143) patterns are 

synthesized with daylight simulation performance. Later 

a new labeling is automatically mapped to each pattern 

based on the following category (e.g. sDA of 20% means 

only 20% of the floor area receives 300 lux or more for 

more than 50% of the occupied hours annually): 

• 0% ≤ sDA < 20%, label = 'A'

• 20 %≤ sDA < 40%, label = 'B'

• 40% ≤ sDA < 60%, label = 'C'

• 60% ≤ sDA < 80%, label = 'D'

• 80% ≤ sDA ≤ 100%, label = 'E'

The patterns with mapped labeling are given to the AC-

GAN algorithm as input dataset. The assumption is that 

the trained DL generative model can generate new 

images of façade pattern (window/wall) based on 

demanded label i.e. daylight performance.   

Results and Analysis of Experiment 3: 

The model is trained in 12,000 epochs with a batch size 

of 5 for 572 patterns of light and shadow. Figure 11 

shows discriminator and generator losses over 12,000 

epochs.  

Figure 11 Loss-epoch curves for the discriminator and 

generator of the AC-GAN model trained for generating 

the light/shadow pattern 

The loss value of the discriminator model arrives to 0.2 

and the loss value of the generator model reaches 5.0 

after the training process. The increase of generator's loss 

means that the generated patterns are discriminated as 

fake by the discriminator model during the training 

process.  Based on the labeling method applied to the 

input dataset, the WWR increase form label "A" to label 

"E". The generator loss shows the results are not as 

desired, however, from examination of the results, we 

can see the match of the window-to-wall ratios (WWRs, 

from small to large) with the daylight sDA performance 

labels (A to E). Figure 12 top shows the original images 

generated by the trained model and Figure 12 bottom 
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shows the same patterns after post processing in which 

pixels are rounded to absolute black and white.  

From the results it can also be found that the generated 

patterns are not within the search space of the original 

parametric model of the patterns, therefore can be 

regarded as novel design options that meet the demanded 

performance. This experiment shows less variety in 

generating patterns for each label, for example, the 

model generates nearly similar patterns for the last two 

labels (D and E). 

Table 1 shows the comparison of daylight sDA 

performance of Parametrically Synthesized in 

Grasshopper (PSG) patterns (seed#0 to seed#4) with one 

generated sample through DL model based on WWR for 

each label.  

Through the comparison in Table 1 between the 

DL/GAN outcomes (4th and 5th columns) and the PSG 

results (2nd and 3rd columns), we can see the correlations 

between WWR and sDA are the same: when WWR 

increases, sDA performance improves, and vice versa. 

However, the windows’ locations in the façade patterns 

also affect the sDA performance (and currently the 

locations were generated randomly for both), therefore 

we shouldn’t expect that the DL/GAN result’s WWR to 

fall necessarily in the range of the PSG results’ WWR, 

for each of the label. 

To evaluate the daylight performance of the images 

generated with DL model, the post-processed images are 

re-drawn in Grasshopper using the same grid of 0.5m × 

0.5m.  Erosion and Dilation methods are applied to 

eliminate the small blobs while keeping the same 

proportion of black to white. Figure 13 shows a sample 

pair of images with the same black to white ratio. The 

left image is generated with DL model after being post-

processed and the right one is the corresponding image 

re-drawn in Grasshopper.   

Figure 13 Left: Image generated with DL model; 

 Right: Image re-drawn in Grasshopper  

The 5th column in Table 1 shows the performance of the 

re-drawn images based on SDA metrics using DIVA4 

daylighting simulation. However, because the location 

of window and opaque matters in daylight simulation, 

the re-drawn strategy may not necessarily represent the 

precise sDA of the DL generated images. Considering 

the 1st column shows the true labels of each category, 

the recent claim is demonstrated through the label 

evaluation of the DL-generated images based on WWR 

(column 6th), and sDA performance (column 7th) 

separately. The predicted labels based on WWR and 

sDA show that the results of the system working for the 

labels A and E, but having errors for B, C, and D. Note 

that this is based on the comparison of one sample for 

each label. In the future work, we will generate multiple 

samples and re-evaluate the results using the Confusion 

Matrix method (Stehman 1997) to get a more accurate 

evaluation of the system. 

Moreover, it is worth to mention that the image dataset 

in this experiment is different from the typical 

experiments for the CNN models (generator and 

discriminator) to analyze. In this experiment, each image 

pattern does not represent specific shapes with 

recognizable features for the CNN filters that usually 

extract various features such as edge, corners, shapes and 

geometry of an image. Considering the complication of 

the dataset, the model did a reasonable job.  

CONCLUSIONS AND FUTURE WORK 

The research has presented two DL/GAN methods for 

generating desired shapes and façade patterns, based on 

given shape class labels and building performance labels, 

respectively. Importantly it demonstrates the new 

method of utilizing synthesized training data through 

parametric modeling and simulation that architects are 

getting familiar with. Parametric modeling, 2D shapes, 

images, 3D geometry, renderings, etc. representing 

design options and their corresponding building 

performance measures through simulations can all 

become big data for training DL/GAN models, with the 

aim of generating performance-based, yet innovative 

design solutions, more efficiently than ever before. 

Unlike the optimization tools that only lead to resulting 

designs within a fixed search space, the demonstrated 

method using GAN is trained through the search space 

but is able to produce novel design options. For example, 

in Experiment 2, the trained model could innovatively 

generate shapes with given labels. 

Experiment 3 needs further studies to improve the 

performance. Multilayer perceptron algorithms such as 

DNN might work better for the discriminator and 

generator of this model; however, the current result 

shows that the trained model could successfully generate 

novel patterns with WWRs that match given 

performance labels. It is worth to emphasize the model's 

capability in producing new options with the demanded 

specifications but out of the original search space of 

design options. The results could then be developed by 

the designers to reach a more compelling design solution 

that meets aesthetic criteria as well. Other novel methods 

such as Style-GAN could be applied to combine the 

performance-based results with artistic or designer- 

preferred patterns.  
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In future studies, the authors intend to (1) improve the 

current DL/GAN-based generative design system using 

synthesized big data, and (2) integrate Building 

Information Modeling (BIM), performance simulation, 

and optimization for investigating DL/GAN-based 

generative design methods. 

Figure 12 Top: Some samples of the patterns generated by the trained AC-GAN model; Bottom: The same images 

after simple post processing (cleaning noises). 

Table  1 Comparison of daylight sDA performance (Label) between PSG patterns of different seeds and one 

generated sample through AC-GAN model (shown in Figure 13) based on WWR

TRUE 

LABEL 

RANGE 

VARIANCE 

OF THE 

WWR OF 

PSG 

PATTERNS 

FOR SEEDS 0 

TO 4 (%) 

RANGE OF 

DAYLIGHT 

PERFORMANCE 

OF PSG 

PATTERNS sDA 

(%) 

WWR OF 

ONE IMAGE 

GENERATED 

BY DL 

MODEL (%) 

DAYLIGHT 

PERFORMANCE 

EVALUATION 

OF THE 

GENERATED 

IMAGES WITH 

DL MODEL sDA 

(%) 

PREDICTED 

LABEL 

BASED ON 

WWR 

PREDICTED 

LABEL 

BASED ON 

SDA 

A 0.5 - 11 0 - 20 7.5 12.8 A A 

B 9 - 21.5 20 - 40 25 53 C C 

C 17.5 - 30.5 40 - 60 45 72.7 E D 

D 29 - 40.5 60 - 80 57 100 E E 

E 38.5 - 71.5 80 - 100 61 100 E E 
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