

AtriumCalc consists of a number of routines that are commonly used for analysis of atrium smoke control systems. For AtriumCalc, the term atrium is used in a generic sense to mean any large-volume space.

More Information About AtriumCalc

Frequently Asked Questions

Enter Project Title: Atrium in Our Favorite Building, 10 Main Street, Kloteville, NY

I-P Units

1: Smoke Exhaust w/ Axisymmetric Plume

2: Smoke Exhaust w/ Balcony Spill Plume

3: Smoke Exhaust w/ Window Plume

4: Preventing Plugholing

5: Airflow to Control Smoke

SI Units

1: Smoke Exhaust w/ Axisymmetric Plume

3. Smoke Exhaust w/ Balcony Spill Plume

3: Smoke Exhaust w/ Window Plume

4: Preventing Plugholing

5: Airflow to Control Smoke

AtriumCalc Version 1.0

© 2014 John H. Klote

Project: Atrium in Our Favorite Building, 10 Main Street, Kloteville, NY Routine 1: Atrium Smoke Exhaust with an Axisymmetric Plume

Notes:

- Makeup air is shown as being supplied by an opening or openings to the outside, but it can also be supplied by mechanical fans.
- 2. For calculating the volumetric flow rate of smoke exhaust, a value of $K_s = 1.0$ needs to be used except when another value of K_s is supported by test data or an engineering analysis.
- 3. For smoke control design, a value of χ = 0.7 is almost always used, and other values should be supported by engineering data.

$$Q_c = \chi Q$$

 $z_l = 0.533Q_c^{2/5}$
 $m = 0.022Q_c^{1/3}z^{5/3} + 0.0042Q_c$ for $z > z_l$
 $m = 0.0208Q_c^{3/5}z$ for $z \le z_l$
 $T_s = T_o + \frac{K_sQ_c}{mC_p}$
 $\rho_s = \frac{144p_{alm}}{R(T_s + 460)}$
 $V = 60m/\rho_s$
where
 $C_p = specific heat (0.24 Btu/lb-°F).$

= heat release rate of the fire (Btu/s). 0. = convective portion of heat release rate of = distance from base of fire to smoke layer interface, (ft). = limiting elevation (ft). z_l = exhaust mass flow (lb/s). mR = gas constant (53.34 ft lbf/lbm/°R). T_{*} = smoke layer temperature (°F). T_o = ambient or outdoor temperature (°F). = fraction of convective HRR in smoke layer. = smoke density (kg/m³). ρ_s = atmospheric pressure (psi). p_{atm}

= volumetric flow of smoke exhaust (cfm).

= convective fraction (dimensionless).

Input:
$$Q = 3,500$$
 Btu/s

 $z = 40.00$ ft

 $T_0 = 92.0$ °F

 $p_{abn} = 14.70$ psi

 $K_z = 1.0$ (See note 2 above)

 $\chi = 0.70$ (Almost always 0.70)

Output:
$$Q_c = 2,450 \text{ Btu/s}$$

 $z_1 = 12.09 \text{ ft}$
 $m = 149.0 \text{ lb/s}$
 $T_z = 160.5 \text{ °F}$
 $\rho_i = 0.06396 \text{ lb/ft}^3$
 $V = 139,822 \text{ cfm}$

Print

Project: Atrium in Our Favorite Building, 10 Main Street, Kloteville, NY Routine 1: Atrium Smoke Exhaust with an Axisymmetric Plume

Notes:

- Makeup air is shown as being supplied by an opening or openings to the outside, but it can also be supplied by mechanical fans.
- 2. For calculating the volumetric flow rate of smoke exhaust, a value of $K_s = 1.0$ needs to be used except when another value of K_s is supported by test data or an engineering analysis.
- 3. For smoke control design, a value of χ = 0.7 is almost always used, and other values should be supported by engineering data.

$$Q_c = \chi Q$$

 $z_l = 0.166Q_c^{2/5}$
 $m = 0.071Q_c^{1/3}z^{5/3} + 0.0018Q_c$ for $z > z_l$
 $m = 0.032Q_c^{3/5}z$ for $z \le z_l$
 $T_s = T_o + \frac{K_sQ_c}{mC_p}$
 $\rho_s = \frac{p_{atm}}{R(T_s + 273)}$
 $V = m/\rho_s$
where
 $C_p = \text{specific heat (1.0 kJ/kg-°C)}$.

Input:
$$Q = 4,000 \text{ kW}$$
 $z = 12.00 \text{ m}$
 $T_o = 30.0 \text{ °C}$
 $p_{atm} = 101,300 \text{ Pa}$
 $K_z = 1.0 \text{ (See note 2 above)}$
 $\chi = 0.70 \text{ (Almost always 0.70)}$

= convective fraction (dimensionless).

Output:
$$Q_c = 2,800 \text{ kW}$$

 $z_1 = 3.97 \text{ m}$
 $m = 67.98 \text{ kg/s}$
 $T_2 = 71.2 \text{ °C}$
 $\rho_1 = 1.025 \text{ kg/m}^3$
 $V = 66.3 \text{ m}^3/\text{s}$

Print

Airflow to the Smoke Layer

Airflow to the Plume

Project: Atrium in Our Favorite Building, 10 Main Street, Kloteville, NY Routine 5B: Airflow to Control Smoke Flow from the Smoke Layer

Notes:

- Air supply to the communicating space is not shown.
- The smoke exhaust from the atrium and the makeup air to the atrium are not shown.
- 3. Airflow is not to be used to control smoke flow when the calculated value of v_e is greater than 200 fpm.

$$v_e = 38 \left(gH \frac{T_f - T_o}{T_f} \right)^{1/2}$$

where

A = area of opening (ft²).

g = acceleration of gravity (32.2 ft/s²).

H = height of opening (ft).

 T_f = temperature of smoke (°R).

 T_o = ambient temperature (°R).

 $V = \text{volumetric rate of airflow } (V = v_e A) \text{ (cfm)}.$

 v_e = limiting average air velocity (fpm).

Note: The temperatures, T_f and T_o , can be determined from routine 1, 2 or 3.

Input:
$$H = 8.00 \text{ ft}$$

 $T_o = 72.0 \text{ °F}$
 $T_f = 110.0 \text{ °F}$
 $A = 50.0 \text{ ft}^2$

Output: $\nu_{\sigma} = 157.5 \text{ fpm}$

V = 7,875 cfm

Note: The limiting average air velocity does not the exceed the upper limit of 200 fpm.

Print