

FAQ for ASHRAE Climatic Design Data License for Software Developers

Description	Size
Flatfile of all stations and all design elements in SI units	33.1MB
Flatfile of all stations and all design elements in I-P units	34.3MB
List of ASHRAE 3-letter time zones	11.1kB
Individual TBL files (zip'd)	27.1MB
Individual WDV files (zip'd)	86SMB
Individual NetCDF files (zip'd)	1.4G8
Example C++ WDV file parser	21.1kB
Makefile (GCC/Linux) for tblxpand	103B
Example Python library to parse WDV files	13.7k8
Example Python library to parse NetCDF files	13.7k8
Example WDV file for testing	1.5kB
Example NetCDF file for testing	244kB
All examples files (zip'd)	244k8

- What is the ASHRAE Climatic Design Data License for Software Developers?
- How do I purchase the Climatic Design Data License?
- Do I need to renew my Climatic Design Data License every year?
- Does my purchase of the Climatic Design Data License include access to the online Weather Data Viewer?
- Does the Climatic Design Data License provide typical meteorological year (TMY) data or hourly time series for the weather stations?
- How often are the ASHRAE climatic design data updated?
- Will the data I have access to via the Climatic Design Data License disappear when the revised climatic design data become available with the next release of updated data?
- If I have purchased the Climatic Design Data License and later purchase a license for the next release, how will I receive my updated data?
- Can I get a .csv file of the frequency or bin data?
- Will the Excel macro that converted the .wdv files supplied with the purchase of a license to use the raw data of previous versions of Weather Data Viewer work with the Climatic Design Data License .wdv files, or is there a new macro available?
- What are the available weather stations?
- How do I find the nearest weather station for a given latitude and longitude?
- Is there any way to extract frequency matrices from the raw data zip file provided as part of the Climatic Design Data License without using programming?

What exactly are .tbl, .wdv, and .nc files?

<u>What information is included on the spreadsheets available to purchasers of the</u> <u>Climatic Design Data License?</u>

Q: What is the ASHRAE Climatic Design Data License for Software Developers?

A: The ASHRAE Climatic Design Data License for Software Developers makes the raw climatic data for the 12,424 weather stations worldwide available to developers who wish to include some or all of the data in their own software/apps. It provides the data in Microsoft® Excel® spreadsheets (with each row representing a station [12,242 rows] and each column representing a climatic design condition [588 columns]) – one each in I-P units and SI units – that users obtain via download, as well as downloads of individual .tbl files, .wdv files, and NetCDF files; a list of ASHRAE 3-letter time zones; an example C++ WDV file parser; a Makefile (GCC/Linux) for tblxpand; a base92.py (Python) library to parse WDV files and a NetCDF files; and example WDV and NetCDF files for testing.

More information and the terms of the license are available via the preview file on the product's page in the ASHRAE Bookstore.

- **Q:** How do I purchase the Climatic Design Data License?
- A: You can purchase or renew your Climatic Design Data License for a one-time fee via <u>the ASHRAE</u> <u>Bookstore</u>.

Q: Do I need to renew my Climatic Design Data License every year?

A: No, the Climatic Design Data License is not an annual subscription. A purchase of the license enables the user to download the climatic design data and use them in perpetuity.

However, the climatic design data are updated every four years, and a purchase of the license does not enable the user to access or use the updated data available with the next release of the data – a new license would need to be purchased to use the updated data available with the next release.

Q: Does my purchase of the Climatic Design Data License include access to the online Weather Data Viewer?

A: No, the Climatic Design Data License does not include access to the online Weather Data Viewer app.

Q: Does the Climatic Design Data License provide typical meteorological year (TMY) data or hourly time series for the weather stations?

A: No, the data obtained with a purchase of the license does not include this information. Please consult Chapter 14, Section 7, in ASHRAE Handbook—Fundamentals for "Other Sources of Climatic Information."

Q: How often are the ASHRAE climatic design data updated?

A: The ASHRAE climatic design data are updated every four years. This coincides with the publication of the updated climatic data in every new edition of *ASHRAE Handbook—Fundamentals*.

- Q: Will the data I have access to via the Climatic Design Data License disappear when the revised climatic design data become available with the next release of updated data?
- A: No, your access to and permission to use the climatic design data do not disappear. If you choose not to purchase a license to use the updated data available with the next release, you will still have access to and permission to use the data that you downloaded with the purchase of this release's license.

Q: If I have purchased the Climatic Design Data License and later purchase a license for the next release, how will I receive my updated data?

A: Each release of the ASHRAE climatic design data (every four years) is a new product and a new data download for the license. To obtain access to and permission to use the updated data available with the next release, you will need to purchase a new license for that year's release, and upon completion of that purchase you will be able to download the updated data for all of the stations.

Q: Can I get a .csv file of the frequency or bin data?

A: No, there is not a .csv file of the frequency or bin data for the Climatic Design Data License. Creating such a file by extracting all the required files would result in having to share millions of .csv files for each station/variable combination, which would take much time and effort to produce.

Users are encouraged to check with their company's staff engineers, who may have the background or ability to work with the provided tblxpand software or perhaps Python code to do what is needed.

Q: Will the Excel macro that converted the .wdv files supplied with the purchase of a license to use the raw data of previous versions of Weather Data Viewer work with the Climatic Design Data License .wdv files, or is there a new macro available?

A: That old macro will not work with the Climatic Design Data License files, and there is no new macro because the former Microsoft[®] Excel[®] version of Weather Data Viewer is no longer supported.

Options available for converting the data in the .wdv files include the following:

- The provided C++ file tblxpand.cpp provides an example on how to decode .wdv files. Your company's programmers will need to adapt the logic or incorporate the code into their workflows.
- The provided Python-based example library base92.py decodes .wdv files as an alternative to C++.

Q: What are the available weather stations?

A: Users can search stations on a map by name or geographic location using <u>StationFinder</u>, a free online map of the weather stations as published in the 2001, 2005, 2009, 2013, 2017, 2021, or 2025 ASHRAE Handbook—Fundamentals.

Q: How do I find the nearest weather station for a given latitude and longitude?

- A: The specific steps to achieve this depend on the programming language or software being used, but a general brute force procedure is:
 - 1. Calculate the <u>great circle distance</u> using the <u>Haversine</u> distance between your address and all 12,424 stations.
 - 2. Take the minimum distance station.

Information on using Microsoft[®] Excel[®] to complete the Haversine equation is available in this article.

Q: Is there any way to extract frequency matrices from the raw data WDV files provided as part of the Climatic Design Data License without using programming?

A: The short answer is: not really. Typically, purchasers of the license are able to extract the information from the .wdv files as necessary using the provided tblxpand software as a guide. *In theory*, someone could extract all the information into a .csv file format, but this would be millions of files and would be enormous in size and would require much time and effort.

Q: What exactly are .tbl, .wdv, and .nc files?

A: A .tbl file represents the tab-delimited output of the processing program.

A .wdv file represents a compressed version of the frequency binned histograms (1D and 2D), which are used to generate the various design percentiles. An example C++ program and a Python library are also provided to purchasers for guidance on how to decode the base-92 compressed .wdv files.

A .nc file represents the same information as stored in a corresponding .wdv file but in the industrystandard <u>NetCDF</u> format. An example Python script is provided for guidance on how to parse these files. The NetCDF files also include a 3D frequency histogram not found in the .wdv files—dry-bulb temperature vs. wet-bulb temperature vs. hour of the day. You can also use <u>the free Panoply viewer</u> for viewing/visualizing these files.

Q: What information is included on the spreadsheets available to purchasers of the Climatic Design Data License?

A: The following pages show the column headings of the information included on the I-P and SI spreadsheets provided to purchasers of the Climatic Design Data License.

(Note: There are 588 columns of data available for each station – the green bars indicate the topmost row over all 588 columns.

Specific data can also be obtained on a station-by-station basis from the .tbl files available to purchasers of the license.

Station	tation Information														
Region	Country	Prov State	Station Name	WMO	WBAN	Lat	Lon	Elev	StdP	TZ Offset	TZ Code	Period	Climate Zone	Grade	

Annual	Heating	a <mark>nd Hu</mark> m	idificat	ion Des	ign Conc	litions									
Coldoct	Hootir			Humidi	fication D	P/MCDE	3 and HR		Col	dest Month	WS/MC	DB	MCWS/F	PCWD to	Wind
Coldest	Heau	IY DB		99.6%			99.0%		0	.4%	1	%	99.69	% DB	Shelter
WORLIN	99.6%	99.0%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	Factor

Annual	Cooling,	Dehum	idificatio	n, and	Enthalpy	Design	Conditio	ons							
Hottoot	Hottest		C	cooling l	DB/MCW	В			E١	/aporation	WB/MCE)B		MCWS/F	PCWD to
Hottest	Month	0.4	4%	1	%	2	%	0.4	4%	1%	ò	2	.%	0.4%	5 DB
MOLIT	DB	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD

Annual	Cooling	, Dehumi	dificatio	on, and	Enthalpy	/ Design	Conditi	ons							
		Dehu	midificat	ion DP/N	MCDB an	id HR				Enthalp	y/MCDB			Evtromo	
	0.4% 1%						2%		0	.4%	1	%	2	%	May M/P
DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	Wax VVD

Extreme	e Annual	Design	Conditio	ons										
Evtro			E	xtreme A	Annual D)B		n-`	/ear Retu	ırn Period ۱	/alues of	Extrem	e DB	
Extrem	ne Annua		Me	ean	Star	ndard	n=5	years	n=10) years	n=20	years	n=50	years
1%	2.5%	5%	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max

Extreme	e Annual	Design	Conditio	ons									
Extreme Annual WB n-Year Return Period Values of Extreme WB													
Mean Stand		ndard	n=5 y	years	n=10	years	n=20	years	n=50 y	rears			
Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		

Temperatures,	D	egree-Days	s, and	Deg	ree-H	lours
---------------	---	------------	--------	-----	-------	-------

Average Daily Temperature

Annual Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Temperatures, Degree-Days, and Degree-Hours

Standard Deviation of Average Daily Temperature

Annual Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Tempera	atures, D	egree-D	ays, and	d Degre	e-Hours										
	Heating Degree Days 50°F														
Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			

Temperatures, Degree-Days, and Degree-Hours

	Heating Degree Days 65°F													
Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

Temperatures, Degree-Days, and Degree-Hours

	Cooling Degree Days 50°F														
Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			

Temperatures, Degree-Days, and Degree-Hours

					Cooling	Degree	Days 65°	°F				
Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

wind Speed													
Average Wind Speed													
Average wind Speed													
Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	

Droginitet	ion										
Precipitat				A		initatio					
A				Avera	age Prec	ipitation					P
Annual	Jan ⊢e	o Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Precipitat	ion										
				Maxim	num Pre	cipitation	l.				
Annual	Jan Fe	o Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Precipitat	ion										
ricopitat				Minim	num Prec	ipitation					
Annual	lan Fe	h Mar	Apr	May	lun		Δυα	Sen		Nov	Dec
Annuar	Jan To			inay	Juli	501	Aug	Ocp	000	NOV	Dec
Precipitat	ion										
			Sta	indard De	eviation	of Precip	itation				
Annual	Jan Fe	o Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Monthly D	Design Dry B	ulb and M	lean Coii	ncident \	Net Bull	o Tempe	ratures				1
		0.4	% Month	ly Desigr	n Dry Bu	lb Tempe	erature				
Jan	Feb Ma	r Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Menthly)lb. on al M	laan Cali	n a la la mé l			rotureo				6
	Jesign Dry E		iean coi			Desime			- T		
Para I			Incluent	with 0.4%		Design					
Jan	Гер Ма	r Apr	мау	Jun	Jui	Aug	Sep	Oct	Nov	Dec	
Monthly D	Design Dry B	ulb and M	lean Coii	ncident \	Net Bull	o Tempe	ratures				
		29	% Monthl	y Design	Dry Bulk	o Tempe	rature				
Jan	Feb Ma	r Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly I)esian Dry B	ulb and M	lean Coi	ncident \	Net Bull	Tempe	ratures				17
	Mean V	Vet Bulb C	oincident	with 2%	Monthly	Desian I	Drv Bulb	Tempera	iture		
lan	Feb Ma		May	lun	lul	Aug	Sen Sen	Oct	Nov	Dec	2
Jun			Indy	Juli	our	Aug		000	Not	Dee	
Monthly D	Design Dry E	ulb and M	lean Coi	ncident \	Net Bull	o Tempe	ratures				
		59	% Monthl	y Design	Dry Bulk	Tempe	rature				
Jan	Feb Ma	r Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly D	Design Dry B	ulb and M	lean Coii	ncident \	Net Bull	o Tempe	ratures				
	Mean V	Vet Bulb Cr	oincident	with 5%	Monthly	Design I	Dry Bulb	Tempera	ture		
Jan	Feb Ma	r Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	5
		المعمد ال	lean Cel	n o i d o mé l	Mat Dull	Tomas	noture o		10		2
	Design Dry E	iuib and iv				o rempe	ratures				
- Develop		10	% Month	iy Design		b i empe			N-1 approxim		
Jan	Гер Ма	r Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly D	Design Dry E	ulb and M	lean Coii	ncident \	Net Bull	o Tempe	ratures				
	Mean W	/et Bulb Co	oincident	with 10%	Monthly	Design	Dry Bulk	Tempera	ature		
Jan	Feb Ma	r Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly I	Desian Wet I	Bulb and N	lean Coi	ncident	Drv Bull	Tempe	ratures				
		0.4	% Month	ly Design	Wet Bu	lb Temp	erature				
Jan	Feb Ma	r Apr	May	Jun	Jul	Aua	Sep	Oct	Nov	Dec	2

Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperatures									
Mean Dry Bulb Coincident with 0.4% Monthly Design Wet Bulb Temperature									
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec									
Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperatures									
2% Monthly Design Wet Bulb Temperature									
In Eah Mar An May Jun Jul Aug Son Oct Ney Dea									
Jan Feb I Mai I Api I May I Jun I Jun I Aug I Sep I Oct I Nov Dec									
Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperatures									
Mean Dry Bulb Coincident with 2% Monthly Design Wet Bulb Temperature									
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec									
Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperatures									
5% Monthly Design Wet Bulb Temperature									
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec									
Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperatures									
Mean Dry Bulb Coincident with 5% Monthly Design Wet Bulb Temperature									
Jan Feb Mar Apr May Jun Jul Aug Sen Oct Nov Dec									
Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperatures									
10% Monthly Design Wet Bulb Temperature									
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec									
Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperatures									
Mean Dry Bulb Coincident with 10% Monthly Design Wet Bulb Temperature									
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec									
Mean Daily Temperature Range									
Mean Daily Dry Bulb Temperature Range									
lan Eeb Mar An May Jun Jul Aug Sen Oct Nov Dec									
Jan reb mar Api may Jun Jun Aug Jep Oct Nov Dec									
Mean Daily Temperature Range									
Mean Daily Dry Bulb Temperature Range Coincident with 5% Design Dry Bulb Temperature									
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec									
Mean Daily Temperature Range									
Mean Daily Wet Bulb Temperature Range Coincident with 5% Design Dry Bulb Temperature									
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec									
Mean Daily Temperature Range									
Mean Daily Dry Bulb Temperature Range Coincident with 5% Design Wet Bulb Temperature									
Mean Daily Temperature Range									
Mean Daily Wet Bulb Temperature Range Coincident with 5% Design Wet Bulb Temperature									
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec									
Clear-Sky Solar Irradiance									

cical oxy obtain radiance												
Clear-Sky Optical Depth for Beam Irradiance (taub)												
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	

Clear-Sk	y Solar	Irradian	ce								
Clear-Sky Optical Depth for Diffuse Irradiance (taud)											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Clear-Sk	y Solar	Irradian	ce								
Clear-Sky Noon Beam Normal Irradiance on 21st Day											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Clear-Sk	y Solar	Irradian	ce								
Clear-Sky Noon Diffuse Horizontal Irradiance on 21st Day											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
All-Sky \$	Solar Ra	diation	1								
All-Sky Average Monthly Global Horizontal Radiation											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
All-Sky S	Solar Ra	diation									
		All-Sk	y Standa	rd Devia	ation of N	Ionthly G	ilobal Ho	rizontal F	adiation		
Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Historica	al Trend	S								l	
	Hea	tina		Station	Trends		Deare	e-Davs			
DBAvg	99%	99%	1% DB	1% WB	1% DP	HDD50	HDD65	CDD60	CDD65	l	
Historica	al Trend	S								l	
				Station [\]	√ariabilit	y					
DBAvg	Hea	ting	404 00	Cooling	404 00		Degre	e-Days	ODDOS		
	99%	99%	1% DB	1% VVB	1% DP	10090			00065	1	
Historica	al Trend	5		Re	egional T	rends					
	Hea	ting		Coolina	gioriari		Degre	e-Days		Neighbor	
DBAVg	99%	99%	1% DB	1% WB	1% DP	HDD50	HDD65	CDD60	CDD65	s	