STANDARD

ANSI/ASHRAE/IES Addendum az to ANSI/ASHRAE/IES Standard 90.1-2022

Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings

Approved by the ASHRAE Standards Committee on February 8, 2025; by the American National Standards Institute on March 11, 2025; and by the Illuminating Engineering Society on January 28, 2025.

This addendum was approved by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. Instructions for how to submit a change can be found on the ASHRAE® website (https://www.ashrae.org/continuous-maintenance).

The latest edition of an ASHRAE Standard may be purchased from the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 180 Technology Parkway, Peachtree Corners, GA 30092. E-mail: orders@ashrae.org. Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide), or toll free I-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2025 ASHRAE

ISSN 1041-2336

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. **ASHRAE Standard Project Committee 90.1**

Cognizant TC: 7.6 Systems Energy Utilization

SPLS Liaison: Jennifer Isenbeck · ASHRAE Staff Liaison: Emily Toto · IES Liaison: Mark Lien

Richard Lord*, Chair	Kurt Fester	Andrew Klein	Robert Ross*
Thomas Culp*, Co-Vice Chair	Francisco Flores	Vladimir Kochkin*	Armin Rudd
Leonard Sciarra*, Co-Vice Chair	D. Andrew Fouss	Toby Lau	Marty Salzberg*
Rahul Athalye*	Phillip Gentry*	Chonghui Liu	Christopher Schaffner
William Babbington	Jason Glazer*	Emily Lorenz	Greg Schluterman
John Bade*	Melissa Goren*	Samuel Mason*	Kelly Seeger*
Sean Beilman*	David Handwork*	Merle McBride*	Wayne Stoppelmoor*
Daniel Bersohn	Rick Heiden	Benjamin Meyer*	Matthew Swenka*
Paula Cino*	David Herron*	Julian Mills-Beale	Christian Taber*
Glen Clapper	Armin Hauer	Nazme Mohsina	Steven Taylor*
Ernest Conrad*	Gary Heikkinen	Frank Morrison*	Kevin Teakell
Shannon Corcoran*	Mark Heizer*	Michael Myer	Douglas Tucker
Jay Crandell*	Emily Hoffman	Frank Myers*	Jason Vandever
Kelly Cunningham	Mike Houston*	Michael Patterson*	Martha VanGeem*
Brandon Damas*	Harold Jepsen	Timothy Peglow*	Michael Waite*
Thomas Deary	Greg Johnson*	Christopher Perry*	McHenry Wallace*
Darryl Dixon	Zac Johnson	Laura Petrillo-Groh*	Theresa Weston
Julie Donovan*	Duane Jonlin*	Michael Rhodes	Jerry White*
Craig Drumheller*	Michael Jouaneh*	Patrick Riley	Jeffrey Whitelaw
James Earley	Nathan Kahre	Michael Rosenberg*	Jeremiah Williams
Benjamin Edwards	Maria Karpman*	Steven Rosenstock*	

^{*} Denotes members of voting status when the document was approved for publication

ASHRAE STANDARDS COMMITTEE 2024–2025

Douglas D. Fick, Chair	Jaap Hogeling	Kenneth A. Monroe	Paolo M. Tronville
Adrienne G. Thomle, Vice Chair	Jennifer A. Isenbeck	Daniel H. Nall	Douglas K. Tucker
Hoy R. Bohanon, Jr.	Satish N. lyengar	Philip J. Naughton	William F. Walter
Kelley P. Cramm	Phillip A. Johnson	Kathleen Owen	David P. Yuill
Abdel K. Darwich	Paul A. Lindahl, Jr.	Gwelen Paliaga	Susanna S. Hanson, BOD ExO
Drake H. Erbe	Julie Majurin	Karl L. Peterman	Wade H. Conlan, CO
Patricia Graef	Lawrence C. Markel	Justin M. Prosser	

Ryan Shanley, Senior Manager of Standards

Christopher J. Seeton

SPECIAL NOTE

This American National Standard (ANS) is a national voluntary consensus Standard developed under the auspices of ASHRAE. Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this Standard as an ANS, as "substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution." Compliance with this Standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.

Margaret M. Mathison

ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees.

The Senior Manager of Standards of ASHRAE should be contacted for

a. interpretation of the contents of this Standard,

William M. Healy

- b. participation in the next review of the Standard,
- c. offering constructive criticism for improving the Standard, or
- d. permission to reprint portions of the Standard.

DISCLAIMER

ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE's Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.

(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

Addendum az will assist ANSI/ASHRAE/IES Standard 90.1 in achieving its organizational objectives of reducing energy use and direct and indirect greenhouse gas emissions by preparing newly constructed buildings and supporting automobile parking facilities for the widespread adoption of electric vehicles (EVs) by assuring efficient charging sessions, power export readiness, and flexible load management via electrical infrastructure. This addendum includes new definitions and Chapter 8 mandatory provisions.

Efficient Charging Sessions. While charging, the charging system draws ± 250 W in addition to the amount of power that is transferred to the battery, reducing the efficiency of charging sessions. At a given circuit ampacity, higher voltage Level 2 charging sessions enable higher charging powers that reduce charging times. Level 2 (≥ 208 V) charging sessions are nearly three times faster than Level 1 (120 V) charging sessions, saving ± 250 Wh for each charging hour reduced. If annual mileage of 12,000 requires 10 kWh in daily recharging energy, a Level 2 charging session eliminates at least 6.4 hours of vehicle charging overhead power per day, saving 900 kWh/year per parking space. See Section 8.4.5(a).

Power Export Readiness. In the near future, vehicles and their batteries may contribute power to building or grid needs when they comply with the upcoming SAE standards for AC bidirectional power transfer. When a nonresidential project includes EV charging, the infrastructure branch-circuit topology and conductors should be ready by utilizing dedicated branch circuits with conductors sized to match the expected SAE bidirectional power transfer levels from light-duty vehicles. See Section 8.4.5(b).

Flexible Load Management Readiness. When a project includes EV charging, the infrastructure should be ready to support demand management to reduce greenhouse gas emissions and manage peak demand charges where applicable. To achieve this, EV chargers must be network-connected and ready to be controlled by the building management system or a grid services provider. Nearly all EVSE or controlled receptacles suitable for commercial or high-rise residential use will utilize some form of connectivity for session management and customer billing. See Section 8.4.5(c).

Cost Effectiveness. The scaler ratio is cost positive when EV spaces are charging vehicles at least 10% of the year. The social cost of carbon approach is cost positive when EV spaces are charging vehicles at least 6% of the year.

Note: In this addendum, changes to the current standard are indicated in the text by <u>underlining</u> (for additions) and <u>strikethrough</u> (for deletions) unless the instructions specifically mention some other means of indicating the changes.

Addendum az to Standard 90.1-2022

Revise Section 3 as shown below.

3. DEFINITIONS, ABBREVIATIONS, AND ACRONYMS

[...]

electric vehicle (EV): an automotive-type vehicle for on-road use, such as passenger automobiles, buses, trucks, vans, neighborhood electric vehicles, and electric motorcycles, primarily powered by an electric motor that draws current from a building electrical service, electric vehicle supply equipment, rechargeable storage battery, fuel cell, photovoltaic array, or another source of electric current. Plug-in hybrid EVs are EVs having a second source of motive power.

<u>electric vehicle space (EV space)</u>: a parking space that is provided with a dedicated means of power transfer between an EV and power supply for the purpose of charging EV batteries.

<u>electric vehicle supply equipment (EVSE)</u>: equipment for power transfer, including the ungrounded, grounded, and equipment grounding conductors, and the electric vehicle connectors, attachment plugs, personal protection system, and all other fittings, devices, power outlets, or apparatus installed specifically for the purpose of transferring power between the premises wiring and the <u>electric vehicle</u>.

 $[\ldots]$

3.3 Abbreviations and Acronyms

 $[\ldots]$

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

EV <u>electric vehicle</u>

<u>EVSE</u> <u>electric vehicle supply equipment</u>

Revise Section 8.4 as shown below.

8.4 Mandatory Provisions

[...]

8.4.5 Minimum Requirements for AC Electric Vehicle Spaces (EV Spaces). EV spaces shall comply with all of the following:

- a. Branch circuits serving EV spaces shall have a rated voltage of not less than 208 V.
- b. In *buildings* other than multifamily, branch circuits serving charging of *EV*s shall have conductors sized to deliver a continuous duty load of not less than 6.6 kVA to each *EV space* and circuit protection sized to serve the load.
- c. In buildings other than multifamily, electric vehicle supply equipment (EVSE) shall be capable of being controlled by a building management system or grid services aggregator.

© ASHRAE. Per international copyright law, additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

POLICY STATEMENT DEFINING ASHRAE'S CONCERN FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members' activities on both the indoor and outdoor environment. ASHRAE's members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted Standards and the practical state of the art.

ASHRAE's short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the Standards and Guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive Technical Committee structure, continue to generate up-to-date Standards and Guidelines where appropriate and adopt, recommend, and promote those new and revised Standards developed by other responsible organizations.

Through its *Handbook*, appropriate chapters will contain up-to-date Standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating Standards and Guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system's intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE's primary concern for environmental impact will be at the site where equipment within ASHRAE's scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.

ASHRAE · 180 Technology Parkway · Peachtree Corners, GA 30092 · www.ashrae.org

About ASHRAE

Founded in 1894, ASHRAE is a global professional society committed to serve humanity by advancing the arts and sciences of heating, ventilation, air conditioning, refrigeration, and their allied fields.

As an industry leader in research, standards writing, publishing, certification, and continuing education, ASHRAE and its members are dedicated to promoting a healthy and sustainable built environment for all, through strategic partnerships with organizations in the HVAC&R community and across related industries.

To stay current with this and other ASHRAE Standards and Guidelines, visit www.ashrae.org/standards, and connect on LinkedIn, Facebook, Twitter, and YouTube.

Visit the ASHRAE Bookstore

ASHRAE offers its Standards and Guidelines in print, as immediately downloadable PDFs, and via ASHRAE Digital Collections, which provides online access with automatic updates as well as historical versions of publications. Selected Standards and Guidelines are also offered in redline versions that indicate the changes made between the active Standard or Guideline and its previous edition. For more information, visit the Standards and Guidelines section of the ASHRAE Bookstore at www.ashrae.org/bookstore.

IMPORTANT NOTICES ABOUT THIS STANDARD

To ensure that you have all of the approved addenda, errata, and interpretations for this Standard, visit www.ashrae.org/standards to download them free of charge.

Addenda, errata, and interpretations for ASHRAE Standards and Guidelines are no longer distributed with copies of the Standards and Guidelines. ASHRAE provides these addenda, errata, and interpretations only in electronic form to promote more sustainable use of resources.